Sparse-view neutron CT reconstruction of irradiated fuel assembly using total variation minimization with Poisson statistics
详细信息    查看全文
  • 作者:Muhammad Abir ; Fahima Islam ; Daniel Wachs…
  • 关键词:CT reconstruction ; Sparse ; view ; Total variation minimization ; Poisson statistics ; Irradiated fuel assembly
  • 刊名:Journal of Radioanalytical and Nuclear Chemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:307
  • 期:3
  • 页码:1967-1979
  • 全文大小:4,046 KB
  • 参考文献:1.Sinha V, Avachat AV, Lee HK (2013) Design and development of a neutron/X-ray combined computed tomography system at Missouri S&T. J Radioanal Nucl Chem 296(2):799–806. doi:10.​1007/​s10967-012-2062-x CrossRef
    2.Kawabata Y, Hino M, Matsushima U, Horie T, Nakano T, Maruyama R (2005) Cold and very cold neutron radiography for high contrast neutron imaging in Kyoto University Reactor. J Radioanal Nucl Chem 264(2):319–324. doi:10.​1007/​s10967-005-0714-9 CrossRef
    3.Buzug T (2008) Computed tomography: from photon statistics to modern cone-beam CT. Springer-Verlag, Berlin
    4.Craft AE, Williams WJ, Abir MIK, Wachs DM (2013) AFIP-7 Tomography—2013 Status Report. doi:INL/EXT-13-30741 United States, doi: 10.​2172/​1124666
    5.Kudo H, Suzuki T, Rashed EA (2013) Image reconstruction for sparse-view CT and interior CT—introduction to compressed sensing and differentiated backprojection. Quant Imaging Med Surg 3(3):147–161. doi:10.​3978/​j.​issn.​2223-4292.​2013.​06.​01
    6.Chen GH, Tang J, Leng S (2008) Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med Phys 35(2):660–663CrossRef
    7.Duan X, Zhang L, Xing Y, Chen Z, Cheng J (2009) Few-view projection reconstruction with an iterative reconstruction- reprojection algorithm and TV constraint. IEEE Trans Nucl Sci 56(3):1377–1382CrossRef
    8.Egiazarian K, Foi A, Katkovnik V (2006) Compressed sensing image reconstruction via recursive spatially adaptive filtering. In: Proceedings—International Conference on Image Processing, ICIP, pp I549–I552
    9.Gardũo E, Herman GT, Davidi R (2011) Reconstruction from a few projections by ℓ1-minimization of the Haar transform. Inverse Prob 27(5):055006CrossRef
    10.Han X, Bian J, Ritman EL, Sidky EY, Pan X (2012) Optimization-based reconstruction of sparse images from few-view projections. Phys Med Biol 57(16):5245–5273CrossRef
    11.Huang Jing J, Ma J, Liu N, Zhang H, Bian Z, Feng Y, Feng Q, Chen W (2011) Sparse angular CT reconstruction using non-local means based iterative-correction POCS. Comput Biol Med 41(4):195–205CrossRef
    12.Li H, Chen X, Wang Y, Zhou Z, Zhu Q, Yu D (2014) Sparse CT reconstruction based on multi-direction anisotropic total variation (MDATV). BioMedical Engineering Online 13(1):92CrossRef
    13.Liu Y, Liang Z, Ma J, Lu H, Wang K, Zhang H, Moore W (2014) Total variation-stokes strategy for sparse-view x-ray ct image reconstruction. IEEE Trans Med Imaging 33(3):749–763CrossRef
    14.Niu S, Gao Y, Bian Z, Huang J, Chen W, Yu G, Liang Z, Ma J (2014) Sparse-view x-ray CT reconstruction via total generalized variation regularization. Phys Med Biol 59(12):2997–3017CrossRef
    15.Pan X, Sidky EY, Vannier M (2009) Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Prob 25(12):123009CrossRef
    16.Sidky EY, Kao CM, Pan X (2006) Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J X-Ray Sci Technol 14(2):119–139
    17.Tang J, Nett BE, Chen GH (2009) Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms. Phys Med Biol 54(19):5781–5804CrossRef
    18.Tian Z, Jia X, Yuan K, Pan T, Jiang SB (2011) Low-dose CT reconstruction via edge-preserving total variation regularization. Phys Med Biol 56(18):5949–5967CrossRef
    19.Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195CrossRef
    20.Zhu Z, Wahid KA, Babyn P (2012) CT image reconstruction from partial angular measurements via compressed sensing. In: 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering: Vision for a Greener Future, CCECE 2012
    21.Sidky EY, Jorgensen JH, Pan X (2012) Convex optimization problem prototyping for image reconstruction in computed tomography with the ChambollePock algorithm. Phys Med Biol 57(10):3065–3091. doi:10.​1088/​0031-9155/​57/​10/​3065 CrossRef
    22.Leng S, Tang J, Zambelli J, Nett B, Tolakanahalli R, Chen GH (2008) High temporal resolution and streak-free four-dimensional cone-beam computed tomography. Phys Med Biol 53(20):5653–5673. doi:10.​1088/​0031-9155/​53/​20/​006 CrossRef
    23.Sidky EY, Pan X (2008) Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 53(17):4777–4807. doi:10.​1088/​0031-9155/​53/​17/​021 CrossRef
    24.Chen Z, Jin X, Li L, Wang G (2013) A limited-angle CT reconstruction method based on anisotropic TV minimization. Phys Med Biol 58(7):2119–2141. doi:10.​1088/​0031-9155/​58/​7/​2119 CrossRef
    25.Jin X, Li L, Chen Z, Zhang L, Xing Y (2012) Anisotropic total variation minimization method for limited-angle CT reconstruction. In: Proceedings of SPIE—The International Society for Optical Engineering. doi:10.​1117/​12.​930339
    26.Liu Y, Ma J, Fan Y, Liang Z (2012) Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction. Phys Med Biol 57(23):7923–7956CrossRef
    27.Qi H, Chen Z, Zhou L CT Image reconstruction from sparse projections using adaptive TpV regularization. Comput Math Methods Med
    28.Chen GH, Tang J, Nett B, Qi Z, Leng S, Szczykutowicz T (2010) Prior image constrained compressed sensing (PICCS) and applications in X-ray computed tomography. Curr Med Imaging Rev 6(2):119–134CrossRef
    29.Ramirez-Giraldo JC, Trzasko J, Leng S, Yu L, Manduca A, McCollough CH (2011) Nonconvex prior image constrained compressed sensing (NCPICCS): theory and simulations on perfusion CT. Med Phys 38(4):2157–2167. doi:10.​1118/​1.​3560878 CrossRef
    30.Qi Z, Chen GH (2011) Extraction of tumor motion trajectories using PICCS-4DCBCT: a validation study. Med Phys 38(10):5530–5538. doi:10.​1118/​1.​3637501 CrossRef
    31.Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vision 20(1–2):89–97
    32.Le T, Chartrand R, Asaki TJ (2007) A variational approach to reconstructing images corrupted by poisson noise. J Math Imaging Vision 27(3):257–263. doi:10.​1007/​s10851-007-0652-y CrossRef
    33.Sawatzky A, Brune C, Müller J, Burger M (2009) Total variation processing of images with poisson statistics. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 5702 LNCS
    34.Figueiredo MAT, Nowak RD, Wright SJ (2007) Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J Sel Top Sign Process 1(4):586–597. doi:10.​1109/​JSTSP.​2007.​910281 CrossRef
    35.Hastie T, Rosset S, Tibshirani R, Zhu J (2004) The entire regularization path for the support vector machine. J Mach Learn Res 5:1391–1415
    36.Chambolle A, Pock T (2011) A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vision 40(1):120–145CrossRef
    37.Goldfarb D, Yin W (2006) Second-order cone programming methods for total variation-based image restoration. SIAM J Sci Comput 27(2):622–645CrossRef
    38.Ramani S, Fessler JA (2012) A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction. IEEE Trans Med Imaging 31(3):677–688. doi:10.​1109/​TMI.​2011.​2175233 CrossRef
    39.Becker S, Bobin J, Candès EJ (2011) NESTA: a fast and accurate first-order method for sparse recovery. SIAM J Imaging Sci 4(1):1–39. doi:10.​1137/​090756855 CrossRef
    40.Aujol JF (2009) Some first-order algorithms for total variation based image restoration. J Math Imaging Vision 34(3):307–327CrossRef
    41.Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60(1–4):259–268CrossRef
    42.Bardsley JM, Goldes J (2009) Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation. Inverse Prob 25(9):095005CrossRef
    43.Zanella R, Boccacci P, Zanni L, Bertero M (2009) Efficient gradient projection methods for edge-preserving removal of Poisson noise. Inverse Prob. doi:10.​1088/​0266-5611/​25/​4/​045010
    44.Rouse DM, Hemami SS (2008) Understanding and simplifying the structural similarity metric. In: Proceedings—International Conference on Image Processing, ICIP, pp 1188–1191. doi:10.​1109/​ICIP.​2008.​4711973
    45.Jia X, Dong B, Lou Y, Jiang SB (2011) GPU-based iterative cone-beam CT reconstruction using tight frame regularization. Phys Med Biol 56(13):3787–3807. doi:10.​1088/​0031-9155/​56/​13/​004 CrossRef
  • 作者单位:Muhammad Abir (1)
    Fahima Islam (2)
    Daniel Wachs (1)
    Hyoung-Koo Lee (2)

    1. Materials and Fuel Complex, Idaho National Laboratory, P.O. Box- 1625, Idaho Falls, ID, 83415-6188, USA
    2. Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, 301 W. 14th St., Rolla, MO, 65409, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nuclear Chemistry
    Physical Chemistry
    Nuclear Physics, Heavy Ions and Hadrons
    Diagnostic Radiology
    Inorganic Chemistry
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1588-2780
文摘
We inspect the nuclear fuel assembly by demonstrating the potential use of sparse-view neutron computed tomography. The projection images of the fuel assembly were collected at the Idaho National Laboratory hot fuel examination facility using indirect foil-film transfer technique. The radiographs were digitized using a commercial film digitizer and registered spatially for reconstruction. Digitized data were reconstructed using simultaneous algebraic reconstruction technique (SART) with total variation minimization using a dual approach for numerical solution assuming the projection data are corrupted by Poisson noise. To validate and evaluate the performance of the algorithm, visual inspections, as well as quantitative evaluation studies using a computer simulation data and the experimental data of the fuel assembly were carried out. The proposed method provides better reconstruction for both simulated and experimental case in terms of artifact reduction, higher SNR, and better spatial resolution compared to the reconstruction yielded by filtered back projection and SART reconstruction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700