Distracted by danger: Temporal and spatial dynamics of visual selection in the presence of threat
详细信息    查看全文
  • 作者:Manon Mulckhuyse ; Edwin S. Dalmaijer
  • 关键词:Attention ; Emotion ; Eye movement ; Oculomotor system ; Fear conditioning
  • 刊名:Cognitive, Affective, & Behavioral Neuroscience
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:16
  • 期:2
  • 页码:315-324
  • 全文大小:503 KB
  • 参考文献:Bannerman, R. L., Milders, M., de Gelder, B., & Sahraie, A. (2009). Orienting to threat: Faster localization of fearful facial expressions and body postures revealed by saccadic eye movements. Proceedings of the Royal Society B: Biological Sciences, 276, 1635–1641.CrossRef PubMed PubMedCentral
    Bannerman, R. L., Milders, M., & Sahraie, A. (2009). Processing emotional stimuli: Comparison of saccadic and manual choice-reaction times. Cognition and Emotion, 23, 930–954.CrossRef
    Bannerman, R. L., Milders, M., & Sahraie, A. (2010a). Attentional bias to brief threat-related faces revealed by saccadic eye movements. Emotion, 10, 733–738.CrossRef PubMed
    Bannerman, R. L., Milders, M., & Sahraie. (2010b). Attentional cueing: Fearful body postures capture attention with saccades. Journal of Vision, 10, 23.CrossRef PubMed
    Belopolsky, A. V., & Theeuwes, J. (2012). Updating the premotor theory: The allocation of attention is not always accompanied by saccade preparation. Journal of Experimental Psychology. Human Perception and Performance, 38(4), 902–914.CrossRef PubMed
    Boddez, Y., Baeyens, F., Luyten, L., Vansteenwegen, D., Hermans, D., & Beckers, T. (2013). Rating data are underrated: Validity of US expectancy in human fear conditioning. Journal of Behavior Therapy and Experimental Psychiatry, 44, 201–206.CrossRef PubMed
    Brown, J. S., Kalish, H., & Farber, I. E. (1951). Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. Journal of Experimental Psychology, 41, 317–328.CrossRef PubMed
    Calvo, M. G., Avero, P., & Lundqvist, D. (2006). Facilitated detection of angry faces: Initial orienting and processing efficiency. Cognition and Emotion, 20(6), 785–811.CrossRef
    Calvo, M. G., & Lang, P. J. (2004). Gaze patterns when looking at emotional pictures: Motivationally biased attention. Motivation and Emotion, 28, 221–243.CrossRef
    Calvo, M. G., & Nummenmaa, L. (2008). Detection of emotional faces: Salient physical features guide effective visual search. Journal of Experimental Psychology: General, 137(3), 471–494.CrossRef
    Carretié, L. (2014). Exogenous (automatic) attention to emotional stimuli: A review. Cognitive, Affective, & Behavioral Neuroscience. doi:10.​3758/​s13415-014-0270-2
    Dalmaijer, E. S., Mathôt, S., & Van der Stigchel, S. (2014). PyGaze: An open-source, cross-platform toolbox for minimal-effort programming of eye-tracking experiments. Behavior Research Methods, 46, 913–921.CrossRef PubMed
    Davidson, R. J., & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences, 3(1), 11–21.CrossRef PubMed
    Davis, M. (1992a). The role of the amygdala in conditioned fear. In J. P. Aggleton (Ed.), The amygdala (pp. 255–306). Wilmington, DE: Wiley-Liss.
    Davis, M. (1992b). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15, 353–375.CrossRef PubMed
    Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6(1), 13–34.CrossRef PubMed
    De Gelder, B., Van Honk, J., & Tamietto, M. (2011). Emotion in the brain: Of low roads, high roads and roads less travelled. Nature Reviews. Neuroscience, 11, 773–783.
    Delgado, M. R., Olsson, A., & Phelps, E. A. (2006). Extending animal models of fear conditioning to humans. Biological Psychology, 73, 39–48.CrossRef PubMed
    Derakshan, N., & Koster, E. H. W. (2010). Processing efficiency in anxiety: Evidence from eye-movements during visual search. Behaviour Research and Therapy, 48, 1180–1185.CrossRef PubMed
    Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences, 10, 382–390.CrossRef PubMed
    Fox, E., Russo, R., Bowles, R., & Dutton, K. (2001). Do threatening stimuli draw or hold visual attention in subclinical anxiety? Journal of Experimental Psychology. General, 130(4), 681–700.CrossRef PubMed PubMedCentral
    Fox, E., Russo, R., & Dutton, K. (2002). Attentional bias for threat: Evidence for delayed disengagement from emotional faces. Cognition and Emotion, 16, 355–379.CrossRef PubMed PubMedCentral
    Godijn, R., & Theeuwes, J. (2002). Programming of endogenous and exogenous saccades: Evidence for a competitive integration model. Journal of Experimental Psychology. Human Perception and Performance, 28(5), 1039–1054.CrossRef PubMed
    Hamm, A. O., Weike, A. I., Schupp, H. T., Treig, T., Dressel, A., & Kessler, C. (2003). Affective blindsight: Intact fear conditioning to a visual cue in a cortically blind patient. Brain, 126, 267–275.CrossRef PubMed
    Hansen, C., & Hansen, R. (1988). Finding the face in the crowd: An anger superiority effect. Journal of Personality and Social Psychology, 54, 917–924.CrossRef PubMed
    Hofmann, S. G. (2008). Cognitive processes during fear acquisition and extinction in animals and humans: Implications for exposure therapy of anxiety disorders. Clinical Psychology Review, 28, 199–210.CrossRef PubMed PubMedCentral
    Humphrey, K., Underwood, G., & Lambert, T. (2012). Salience of the lambs: A test of the saliency map hypothesis with pictures of emotive objects. Journal of Vision, 12(1). doi:10.​1167/​12.​1.​22
    Hunt, A. R., Cooper, R. M., Hungr, C., & Kingstone, A. (2007). The effect of emotional faces on eye movements and attention. Visual Cognition, 15(5), 513–531.CrossRef
    Kissler, J., & Keil, A. (2008). Look–don’t look! How emotional pictures affect pro- and anti saccades. Experimental Brain Research, 188, 215–222.CrossRef PubMed
    Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at pictures: Affective, visceral, and behavioral reactions. Psychophysiology, 30, 261–273.CrossRef PubMed
    Leber, A. B. (2010). Neural predictors of within-subject fluctuations in attentional control. The Journal of Neuroscience, 30, 11458–11465.CrossRef PubMed
    LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.CrossRef PubMed
    LeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology, 23(4/5), 727–738.CrossRef PubMed
    LeDoux, J. E. (2014). Coming to terms with fear. PNAS, 11, 2871–2878.CrossRef
    Liddell, B. J, Brown, K. J., Kemp, A. H, Barton, M. J., Das, P., Peduto, A., . . . Williams, L. M. (2005). A direct brainstem–amygdala–cortical “alarm” system for subliminal signals of fear. NeuroImage, 24, 235–243.
    Linke, R., De Lima, A. D., Schwegler, H., & Pape, H. C. (1999). Direct synaptic connections of axons from the superior colliculus with identified thalamo-amygdaloid projection neurons in the rat: Possible substrates of a subcortical visual pathway to the amygdala. Journal of Comparative Neurology, 403, 158–170.CrossRef PubMed
    Lissek, S., Biggs, A. L., Rabin, S. J., Cornwell, B. R., Alvarez, R. P., Pine, D. S., & Grillon, C. (2008). Generalization of conditioned fear-potentiated startle in humans: Experimental validation and clinical relevance. Behaviour Research and Therapy, 46(5), 678–687.CrossRef PubMed PubMedCentral
    LoBue, V., Matthews, K., Harvey, T., & Stark, S. L. (2014). What accounts for the rapid detection of threat? Evidence for an advantage in perceptual and behavioral responding from eye movements. Emotion, 14, 816–823.CrossRef PubMed
    Mackintosh, N. J. (1983). Conditioning and associative learning. Oxford, England: Oxford University Press.
    Maren, S. (2001). Neurobiology of Pavlovian fear conditioning. Annual Review of Neuroscience, 24, 897–931.CrossRef PubMed
    McPeek, R. M. (2006). Incomplete suppression of distractor-related activity in the frontal eye field results in curved saccades. Journal of Neurophysiology, 96, 2699–2711.CrossRef PubMed PubMedCentral
    McSorley, E., Haggard, P., & Walker, R. (2006). Time course of oculomotor inhibition revealed by saccade trajectory modulation. Journal of Neurophysiology, 96, 1420–1424.CrossRef PubMed
    McSorley, E., & Van Reekum, C. M. (2013). The time course of implicit affective picture processing: An eye movement study. Emotion, 13, 769–773.CrossRef PubMed
    Mogg, K., Millar, N., & Bradley, B. P. (2000). Biases in eye movements to threatening facial expressions in generalized anxiety disorder and depressive disorder. Journal of Abnormal Psychology, 109, 695–704.CrossRef PubMed
    Morris, J. S., Ohman, A., & Dolan, R. J. (1999). A subcortical pathway to the right amygdala mediating “unseen” fear. Proceedings of the National Academy of Sciences of the United States of America, 96, 1680–1685.CrossRef PubMed PubMedCentral
    Mulckhuyse, M., Crombez, G., & Van der Stigchel, S. (2013). Conditioned fear modulates visual selection. Emotion, 13(3), 529–536.CrossRef PubMed
    Mulckhuyse, M., Van Zoest, W., & Theeuwes, J. (2008). Capture of the eyes by relevant and irrelevant onsets. Experimental Brain Research, 186, 225–235.CrossRef PubMed PubMedCentral
    Munoz, D. P. (2002). Saccadic eye movements: Overview of neural circuitry. Progress in Brain Research, 140, 89–96.CrossRef PubMed
    Notebaert, L., Crombez, G., Van Damme, S., De Houwer, J., & Theeuwes, J. (2011). Signals of threat do not capture, but prioritize, attention: A conditioning approach. Emotion, 11(1), 81.CrossRef PubMed
    Nummenmaa, L., Hyönä, J., & Calvo, M. G. (2006). Eye movement assessment of selective attentional capture by emotional pictures. Emotion, 6, 257–268.CrossRef PubMed
    Nummenmaa, L., Hyönä, J., & Calvo, M. G. (2009). Emotional scene content drives the saccade generation system reflexively. Journal of Experimental Psychology. Human Perception and Performance, 35(2), 305–323.CrossRef PubMed
    Öhman, A., Flykt, A., & Esteves, F. (2001). Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology. General, 130(3), 466–478.CrossRef PubMed
    Öhman, A., Lundqvist, D., & Esteves, F. (2001). The face in the crowd revisited: A threat advantage with schematic stimuli. Journal of Personality and Social Psychology, 80, 381–396.CrossRef PubMed
    Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a ‘low road’ to ‘many roads’ of evaluating biological significance. Nature Review Neuroscience, 11, 773–783.CrossRef
    Pineles, S. L., Orr, M. R., & Orr, S. P. (2009). An alternative scoring method for skin conductance responding in a differential fear conditioning paradigm with a long-duration conditioned stimulus. Psychophysiology, 46, 1–12.CrossRef
    Ratcliff, R. (1979). Group reaction-time distributions and an analysis of distribution statistics. Psychological Bulletin, 86(3), 446–461.CrossRef PubMed
    Reynolds, M. G., Eastwood, J. D., Partanen, M., Frischen, A., & Smilek, D. (2009). Monitoring eve movements while searching for affective faces. Visual Cognition, 17, 318–333.CrossRef
    Rizzolatti, G., Riggio, L., Dascola, I., & Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1A), 31–40.CrossRef PubMed
    Robinson, D. L., & McClurkin, J. W. (1989). The visual superior colliculus and pulvinar. In R. H. Wurtz & M. E. Goldberg (Eds.), The neurobiology of saccadic eye movements (pp. 337–360). Amsterdam, The Netherlands: Elsevier.
    Robinson, D. L., & Petersen, S. E. (1992). The pulvinar and visual salience. Trends in Neurosciences, 15, 127–132.CrossRef PubMed
    Schall, J. D. (1995). Neural basis of saccade target selection. Reviews in the Neurosciences, 6(1), 63–85.CrossRef PubMed
    Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2012). The presence of threat affects saccade trajectories. Visual Cognition, 20, 284–299.CrossRef
    Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2014). Attentional capture by signals of threat. Cognition and Emotion. doi:10.​1080/​02699931.​2014.​924484 PubMed
    Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2015). Potential threat attracts attention and interferes with voluntary saccades. Emotion, 15(3), 329–338.CrossRef PubMed
    Sehlmeyer, C., Schoning, S., Zwitserlood, P., Pfleiderer, B., Kircher, T., Arolt, V., & Konrad, C. (2009). Human fear conditioning and extinction in neuroimaging: A systematic review. PloS One, 4, e5865.CrossRef PubMed PubMedCentral
    Shipp, S. (2004). The brain circuitry of attention. Trends in Cognitive Science, 8, 223–230.CrossRef
    Tamietto, M., & De Gelder, B. (2010). Neural basis of non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11, 687–709.
    Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135, 77–99.CrossRef PubMed
    Theeuwes, J., Kramer, A. E., Hahn, S., & Irwin, D. E. (1998). Our eyes do not always go where we want them to go: Capture of the eyes by new objects. Psychological Science, 9, 379–385.CrossRef
    Thompson, K. G., & Bichot, N. P. (2005). A visual salience map in the primate frontal eye field. Progress in Brain Research, 147, 249–262.CrossRef
    Tipples, J., Young, A. W., Quinlan, P., Broks, P., & Ellis, A. W. (2002). Searching for threat. The Quarterly Journal of Experimental Psychology, 55A, 1007–1026.CrossRef
    Trappenberg, T. P., Dorris, M. D., Munoz, D. P., & Klein, R. M. (2001). A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuroscience, 13, 256–271.CrossRef PubMed
    Van der Stigchel, S., Meeter, M., & Theeuwes, J. (2006). Eye movement trajectories and what they tell us. Neuroscience & Biobehavioral Reviews, 30, 666–679.CrossRef
    Vuilleumier, P. (2005). How brains beware: Neural systems for emotional attention. Trends in Cognitive Sciences, 9(12), 585–594.CrossRef PubMed
    Walker, R., Techawachirakul, P., & Haggard, P. (2009). Frontal eye field stimulation modulates the balance of salience between target and distractors. Brain Research, 270, 54–63.CrossRef
    West, G. L., Al-Aidroos, N., Susskind, J., & Pratt, J. (2011). Emotion and action: The effect of fear on saccadic performance. Experimental Brain Research, 209, 153–158.CrossRef PubMed
    Yantis, S. (1993). Stimulus-driven attentional capture and attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 19, 676–681.PubMed
  • 作者单位:Manon Mulckhuyse (1)
    Edwin S. Dalmaijer (2)

    1. Donders Institute for Brain, Cognition and Behavior, Affective Neuroscience, Radboud University, Kapittelweg 29, Nijmegen, The Netherlands
    2. Department of Experimental Psychology, University of Oxford, Oxford, UK
  • 刊物主题:Cognitive Psychology; Neurosciences;
  • 出版者:Springer US
  • ISSN:1531-135X
文摘
Threatening stimuli are known to influence attentional and visual processes in order to prioritize selection. For example, previous research showed faster detection of threatening relative to nonthreatening stimuli. This has led to the proposal that threatening stimuli are prioritized automatically via a rapid subcortical route. However, in most studies, the threatening stimulus is always to some extent task relevant. Therefore, it is still unclear if threatening stimuli are automatically prioritized by the visual system. We used the additional singleton paradigm with task-irrelevant fear-conditioned distractors (CS+ and CS-) and indexed the time course of eye movement behavior. The results demonstrate automatic prioritization of threat. First, mean latency of saccades directed to the neutral target was increased in the presence of a threatening (CS+) relative to a nonthreatening distractor (CS-), indicating exogenous attentional capture and delayed disengagement of covert attention. Second, more error saccades were directed to the threatening than to the nonthreatening distractor, indicating a modulation of automatically driven saccades. Nevertheless, cumulative distributions of the saccade latencies showed no modulation of threat for the fastest goal-driven saccades, and threat did not affect the latency of the error saccades to the distractors. Together these results suggest that threatening stimuli are automatically prioritized in attentional and visual selection but not via faster processing. Rather, we suggest that prioritization results from an enhanced representation of the threatening stimulus in the oculomotor system, which drives attentional and visual selection. The current findings are interpreted in terms of a neurobiological model of saccade programming.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700