Formation of dimethyldithioarsinic acid in a simulated landfill leachate in relation to hydrosulfide concentration
详细信息    查看全文
  • 作者:Jinsung An ; Ki-Hyun Kim ; Mihye Kong ; Joo-Ae Kim…
  • 关键词:Dimethyldithioarsinic acid ; Landfill leachate ; Hydrosulfide ; HPLC–ICPMS
  • 刊名:Environmental Geochemistry and Health
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:38
  • 期:1
  • 页码:255-263
  • 全文大小:731 KB
  • 参考文献:An, J., Kim, K.-H., Kim, J.-A., Jung, H., Yoon, H.-O., & Seo, J. (2013). A simplified analysis of dimethylarsinic acid by wavelength dispersive X-ray fluorescence spectrometry combined with a strong cation exchange disk. Journal of Hazardous Materials, 260, 24–31.CrossRef
    Bednar, A. J., Garbarino, J. R., Ranville, J. F., & Wildeman, T. R. (2002). Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples. Environmental Science and Technology, 36(10), 2213–2218.CrossRef
    Chen, Z., Akter, K. F., Rahuman, M. M., & Naidu, R. (2008). The separation of arsenic species in soils and plant tissues by anion-exchange chromatography with inductively coupled mass spectrometry using various mobile phases. Microchemical Journal, 89(1), 20–28.CrossRef
    Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., et al. (2001). Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16(7–8), 659–718.CrossRef
    Claret, F., Tournassat, C., Crouzet, C., Caucher, E. C., Schafer, T., Braibant, G., et al. (2011). Metal speciation in landfill leachates with a focus on the influence of organic matter. Waste Management, 31(9–10), 2036–2045.CrossRef
    Fricke, M. W., Creed, P. A., Parks, A. N., Shoemaker, J. A., Schwegel, C. A., & Creed, J. T. (2004). Extraction and detection of a new arsine sulfide containing arsenosugar in molluscs by IC-ICP-MS and IC-ESI-MS/MS. Journal of Analytical Atomic Spectrometry, 19, 1454–1459.CrossRef
    Fricke, M. W., Zeller, M., Sun, H., Lai, V. W. M., Cullen, W. R., Shoemaker, J. A., et al. (2005). Chromatographic separation and identification of products from the reaction of dimethylarsinic acid with hydrogen sulfide. Chemical Research in Toxicology, 18(12), 1821–1829.CrossRef
    Ghosh, A., Mukiibi, M., & Ela, W. (2004). TCLP underestimates leaching of arsenic from solid residuals under landfill conditions. Environmental Science and Technology, 38(17), 4677–4682.CrossRef
    Ghosh, A., Mukiibi, M., Sáez, A. E., & Ela, W. P. (2006). Leaching of arsenic from granular ferric hydroxide residuals under mature landfill conditions. Environmental Science and Technology, 40(19), 6070–6075.CrossRef
    Gong, Z., Lu, X., Ma, M., Watt, C., & Le, X. C. (2002). Arsenic speciation analysis. Talanta, 58(1), 77–96.CrossRef
    Grotti, M., Lagomarsino, C., Goessler, W., & Francesconi, K. A. (2000). Arsenic speciation in marine organisms from Antarctic coastal environments. Environmental Chemistry, 7, 207–214.CrossRef
    Guerine, T., Molenat, N., Astruc, A., & Pinel, R. (2000). Arsenic speciation in some environmental samples: a comparative study of HG–GC–QFAAS and HPLC–ICP–MS methods. Applied Organometallic Chemistry, 14(8), 401–410.CrossRef
    ISO 11885 (2007). Water quality—determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). International Organization for Standardization (ISO).
    Ito, A., Takachi, T., Kitada, K., Aizawa, J., & Umita, T. (2001). Characteristics of arsenic elution from sewage sludge. Applied Organometallic Chemistry, 15(4), 266–270.CrossRef
    Jain, C. K., & Ali, I. (2000). Arsenic: Occurrence, toxicity and speciation techniques. Water Research, 34(17), 4304–4312.CrossRef
    Khan, B. I., Jambeck, J., Solo-Gabriele, H. M., Townsend, T. G., & Cai, Y. (2006). Release of arsenic to the environment from CCA-treated wood. 2. Leaching and speciation during disposal. Environmental Science and Technology, 40(3), 994–999.CrossRef
    Komorowicz, I., & Baralkiewicz, D. (2011). Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry-last decade review. Talanta, 84(2), 247–261.CrossRef
    Li, Y., Low, G. K. C., Scott, J. A., & Amal, R. (2010). Arsenic speciation in municipal landfill leachate. Chemosphere, 79(8), 794–801.CrossRef
    Li, Y., Low, G. K. C., Scott, J. A., & Amal, R. (2011). Microbial transformation of arsenic species in municipal landfill leachate. Journal of Hazardous Materials, 188(1–3), 140–147.CrossRef
    Naranmandura, H., Carew, M. W., Xu, S., Lee, J., Leslie, E. M., Weinfeld, M., et al. (2011). Comparative toxicity of arsenic metabolites in human bladder cancer EJ-1 cells. Chemical Research in Toxicology, 24(9), 1586–1596.CrossRef
    Naranmandura, H., Ibata, K., & Suzuki, K. T. (2007). Toxicity of dimethylmonothioarsinic acid toward human epidermoid carcinoma A431 cells. Chemical Research in Toxicology, 20(8), 1120–1125.CrossRef
    Ochi, T., Kita, K., Suzuki, T., Rumpler, A., Goessler, W., & Francesconi, K. A. (2008). Cytotoxic, genotoxic and cell-cycle disruptive effects of thio-dimethylarsinate in cultured human cells and the role of glutathione. Toxicology and Applied Pharmacology, 228(1), 59–67.CrossRef
    Pereira, C. D., Garcia, E. E., Silva, F. V., & Nogueira, A. R. A. (2010). Behaviour of arsenic and selenium in an ICP-QMS with collision and reaction interface. Journal of Analytical Atomic Spectrometry, 25, 1763–1768.CrossRef
    Petrick, J. S., Ayala-Fierro, F., Cullen, W. R., Carter, D. E., & Aposhian, H. V. (2000). Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicology and Applied Pharmacology, 163(2), 203–207.CrossRef
    Pinel-Raffaitin, P., Le Hecho, I., Amouroux, D., & Potin-Gautier, M. (2007). Distribution and fate of inorganic and organic arsenic species in landfill leachates and biogases. Environmental Science and Technology, 41(13), 4536–4541.CrossRef
    Ponthieu, M., Pinel-Raffaitin, P., Hecho, I. L., Mazeas, L., Amouroux, D., Donard, O. X. F., et al. (2007). Speciation analysis of arsenic in landfill leachate. Water Research, 41(14), 3177–3185.CrossRef
    Rader, K. J., Dombrowski, P. M., Farley, K. J., Mahony, J. D., & Di Toro, D. M. (2004). Effect of thioarsenite formation on arsenic(III) toxicity. Environmental Toxicology and Chemistry, 23(7), 1649–1654.CrossRef
    Raml, R., Goessler, W., & Francesconi, K. A. (2006). Improved chromatographic separation of thio-arsenic compounds by reversed-phase high performance liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Chromatography A, 1128(1–2), 164–170.CrossRef
    Raml, R., Rumpler, A., Goessler, W., Vahter, M., Li, L., Ochi, T., et al. (2007). Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh. Toxicology and Applied Pharmacology, 222(3), 374–380.CrossRef
    Ritsema, R., Dukan, L., Navarro, T. R. I., van Leeuwen, W., Oliveira, N., Wolfs, P., et al. (1998). Speciation of arsenic compounds in urine by LC–ICP MS. Applied Organometallic Chemistry, 12(8–9), 591–599.CrossRef
    Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 35(4), 743–759.CrossRef
    Suzuki, S., Arnold, L. L., Pennington, K. L., Chen, B., Naranmandura, H., Le, X. C., et al. (2010). Dietary administration of sodium arsenite to rats: Relations between dose and urinary concentrations of methylated and thio-metabolites and effects on the rat urinary bladder epithelium. Toxicology and Applied Pharmacology, 244(2), 99–105.CrossRef
    Suzuki, K. T., Mandal, B. K., Katagiri, A., Sakuma, Y., Kawakami, A., Ogra, Y., et al. (2004). Dimethylthioarsenicals as arsenic metabolites and their chemical preparations. Chemical Research in Toxicology, 17(7), 914–921.CrossRef
    Tu, C., Ma, L. Q., Zhang, W., Cai, Y., & Harris, W. G. (2003). Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris Vittata L.). Environmental Pollution, 124(2), 223–230.CrossRef
    van de Wiel, H.J. (2004). Determination of elements by ICP-AES and ICP-MS. National Institute for Public Health and the Environment (RIVM), The Netherlands.
    Wangkarn, S., & Pergantis, S. A. (2000). High-speed separation of arsenic compounds using narrow-bore high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 15, 627–633.CrossRef
  • 作者单位:Jinsung An (1)
    Ki-Hyun Kim (2)
    Mihye Kong (3)
    Joo-Ae Kim (4)
    Jeoung Hwa Shin (4)
    Yun Gyong Ahn (5)
    Hye-On Yoon (4)

    1. Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea
    2. Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
    3. Department of Earth System Sciences, Yonsei University, 50 Yeonse-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
    4. Seoul Center, Korea Basic Science Institute, 6-7, Inchon-ro 22-gil, Seongbuk-gu, Seoul, 136-075, Republic of Korea
    5. Western Seoul Center, Korea Basic Science Institute, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-140, Republic of Korea
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Atmospheric Protection, Air Quality Control and Air Pollution
    Public Health
  • 出版者:Springer Netherlands
  • ISSN:1573-2983
文摘
Dimethyldithioarsinic acid (DMDTAV), present in such intense sources as municipal landfill leachate, has drawn a great deal of attention due to its abundant occurrence and different aspect of toxicity. The hydrosulfide (HS−) concentration in leachate was studied as a major variable affecting the formation of DMDTAV. To this end, the HPLC–ICPMS system equipped with the reversed-phase C18 column was used to determine DMDTAV. Simulated landfill leachates (SLLs) were prepared to cover a mature landfill condition with the addition of sodium sulfate and sulfide at varying concentrations in the presence of dimethylarsinic acid (DMAV). The concentration of sodium sulfide added in the SLLs generally exhibited a strong positive correlation with the concentration of DMDTAV. As such, the formation of DMDTAV in the SLLs is demonstrated to be controlled by the interactive relationship between DMAV and the HS−. Keywords Dimethyldithioarsinic acid Landfill leachate Hydrosulfide HPLC–ICPMS

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700