Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria
详细信息    查看全文
  • 作者:A. Durand ; S. Piutti ; M. Rue ; J. L. Morel ; G. Echevarria ; E. Benizri
  • 关键词:Phytomining ; Bioremediation ; PGPR ; Nickel ; Rhizosphere
  • 刊名:Plant and Soil
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:399
  • 期:1-2
  • 页码:179-192
  • 全文大小:550 KB
  • 参考文献:Aboudrar W, Schwartz C, Benizri E, Morel JL, Boularbah A (2007) Soil microbial diversity as affected by the rhizosphere of the hyperaccumulator Thlaspi caerulescens under natural conditions. Int J Phytorem 9:41–52CrossRef
    Aboudrar W, Schwartz C, Morel JL, Boularbah A (2012) Effect of nickel-resistant rhizosphere bacteria on the uptake of nickel by the hyperaccumulator Noccaea caerulescens under controlled conditions. J Soil Sediments 13:501–507CrossRef
    Abou-Shanab R, Angle J, Delorme T, Chaney R, van Berkum P, Moawa H, Ghanem K, Ghozlan H (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224CrossRef
    Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889CrossRef
    Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45CrossRef
    Bani A, Echevarria G, Mullaj A, Reeves R, Morel JL, Sulçe S (2009) Nickel hyperaccumulation by brassicaceae in serpentine soils of Albania and Northwestern Greece. Soil and biota of serpentine: a world view. Northeast Nat 16:385–404CrossRef
    Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining : a five-year field study. Int J Phytorem 17:117–127CrossRef
    Barillot C (2012) Etude des potentialités rhizoremédiatrices et de la diversité des bactéries rhizosphériques d’Arabidopsis halleri, plante hyperaccumulatrice de Zn et Cd. Thèse de l’Université de Technologie de Compiègne, 237 pp
    Becerra-Castro C, Monterroso C, Prieto-Fernández A, Rodríguez-Lamas L, Loureiro-Viñas M, Acea MJ, Kidd PS (2012) Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria. J Haz Mat 217–218:350–359CrossRef
    Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250CrossRef
    Benizri E, Amiaud B (2005) Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biol Biochem 37:2055–2064CrossRef
    Blossfeld S, Perriguey J, Sterckeman T, Morel JL, Lösch R (2009) Rhizosphere pH dynamics in trace-metal-contaminated soils, monitored with planar pH optodes. Plant Soil 330:173–184CrossRef
    Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668PubMed PubMedCentral
    Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245PubMed CrossRef
    Cabello-Conejo MI, Becerra-Castro C, Prieto-Fernández A, Monterroso C, Saavedra-Ferro A, Mench M, Kidd PS (2014) Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator Alyssum pintodasilvae. Plant Soil 1–2:35–50CrossRef
    Chaney RL, Chen KY, Li YM, Angle JS, Baker AJM (2008) Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311:131–140CrossRef
    Dell’Amico E, Cavalca EL, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84CrossRef
    Estrade N, Cloquet C, Echevarria G, Sterckeman T, Deng THB, Tang YT, Morel JL (2015) Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania). Earth Planet Sci Lett 423:24–25CrossRef
    Gao Y, Miao C, Xia J, Mao L, Wang Y, Zhou P (2012) Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial community structure. Front Environ Sci Eng 6:213–223CrossRef
    Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359PubMed PubMedCentral
    Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7PubMed CrossRef
    Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374PubMed CrossRef
    Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68PubMed CrossRef
    Gove B, Hutchinson JJ, Young SD, Craigon J, McGrath SP (2002) Uptake of metals by plants sharing a rhizosphere with the hyperaccumulator Thlaspi caerulescens. Int J Phytorem 4:267–281CrossRef
    Gürtler V, Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142:3–16PubMed CrossRef
    Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831CrossRef
    Ibekwe AM, Kennedy AC (1999) Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soils. Plant Soil 206:151–161CrossRef
    Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025CrossRef
    Jiang C, Wu QT, Sterckeman T, Schwartz C, Sirguey C, Ouvrard S, Perriguey J, Morel JL (2010) Co-planting can phytoextract similar amounts of cadmium and zinc to mono-cropping from contaminated soils. Ecol Eng 36:391–395CrossRef
    Jiang F, Chen L, Belimov AA, Shaposhnikov A, Gong F, Meng X, Hartung W, Jeschke D, Davies W, Dodd I (2012) Multiple impacts of the plant growth-promting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ADB relations of Pisum sativum. J Exp Bot 63:695–709CrossRef
    Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522PubMed CrossRef
    Lindsay WL, Norvell WA (1978) Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428CrossRef
    Liu YG, Ye F, Zeng GM, Fan T, Meng L, Yuan HS (2007) Effects of added Cd on Cd uptake by oilseed rape and pai-tsai co-cropping. Trans Nonferrous Metals Soc China 17:846–852CrossRef
    Lucisine P, Echevarria G, Sterckeman T, Vallance J, Rey P, Benizri E (2014) Effect of hyperaccumulating plant cover composition and rhizosphere-associated bacteria on the efficiency of nickel extraction from soil. Appl Soil Ecol 81:30–36CrossRef
    Ma JF, Nomoto K (1993) Inhibition of mugineic acid-ferric complex uptake in barley by copper, zinc and cobalt. Physiol Plant 89:331–334CrossRef
    Ma Y, Rajkumar M, Freitas H (2009) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725PubMed CrossRef
    Ma Y, Rajkumar M, Luo YM, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants effects on plant growth and Ni uptake. J Hazard Mater 195:230–237PubMed CrossRef
    Magurran AE (2003) Measuring biological diversity. 2003, Wiley-Blackwell Publishing, 264pp
    Miwa H, Ahmed I, Yoon J, Yokota A, Fujiwara T (2008) Variovorax boronicumulans sp. nov., a boron-accumulating bacterium isolated from soil. Int J Syst Evol Microbiol 58:286–289PubMed CrossRef
    Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43CrossRef
    Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574PubMed CrossRef
    Rue M, Vallance J, Echevarria G, Rey P, Benizri E (2015) Rhizosphere microbial communities under mono- or multispecies hyperaccumulator plant cover in a serpentine soil. Aust J Bot 63:92–102
    Sarwar M, Arshad M, Martens DA, Frankenberger WT Jr (1992) Tryptophan-dependent biosynthesis of auxins in soil. Plant Soil 147:207–215CrossRef
    Schlegel HG, Cosson JP, Baker AJM (1991) Nichel-hyperaccumulating plants provide a niche for nickel-resistant bacteria. Bot Acta 104:18–25CrossRef
    Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56PubMed CrossRef
    Sessitsch A, Kuffner M, Kidd PS, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194PubMed PubMedCentral CrossRef
    Shaharoona B, Arshad M, Zahir M, Khalid A (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975CrossRef
    Shahzad SM, Khalid A, Arshad M, Tahir J, Mahmood T (2010) Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture. Eur J Soil Biol 46:342–347CrossRef
    Shallari S, Echevarria G, Schwartz C, Morel JL (2001) Availability of nickel in soils for the hyperaccumulator Alyssum murale (Waldst. & Kit.). S Afr J Sci 97:568–570
    Smaill SJ, Leckie AC, Clinton PW, Hickson AC (2010) Plantation management induces long-term alterations to bacterial phytohormone production and activity in bulk soil. Appl Soil Ecol 45(3):310–314CrossRef
    Tappero R, Peltier E, Grӓfe M, Heidel K, Ginder-Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL, Sparks DL (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654PubMed CrossRef
    Teixeira DA, Alfenas AC, Mafia RG, Ferreira EM, De Siqueira L, Maffia LA, Mounteer AH (2007) Rhizobacterial promotion of eucalypt rooting and growth. Braz J Microbiol 38:118–123CrossRef
    Turgay OC, Görmez A, Bilen S (2012) Isolation and characterization of metal resistant-tolerant rhizosphere bacteria from the serpentine soils in Turkey. Environ Monit Assess 184:515–526PubMed CrossRef
    van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccu-mulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334CrossRef
    van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson C, Meech J, Erskine P, Simonnot MO, Vaughan J, Morel JL, Echevarria G, Fogliani B, Mulligan D (2015) Agromining: farming for metals in the future? Environ Sci Technol. doi:10.​1021/​es50601u PubMed
    Visioli G, d’Egidio S, Vamerali T, Mattarozzi M, Sanangelantoni AM (2014) Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. Chemosphere 117:538–544PubMed CrossRef
    Wei ZB, Guo XF, Wu QT, Long XX, Penn CJ (2011) Phytoextraction of heavy metals from contaminated soil by co-cropping with chelator application and assessment of associated leaching risk. Int J Phytorem 13:717–729CrossRef
    Wöhler I (1997) Auxin-indole derivatives in soils determined by a colorimetric method and by high performance liquid chromatography. Microbiol Res 152:399–405CrossRef
    Wu QT, Hei L, Wong JWC, Schwartz C, Morel JL (2007) Co-cropping for phyto-separation of zinc and potassium from sewage sludge. Chemosphere 68:1954–1960PubMed CrossRef
    Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants. I. Duck weed. J Environ Qual 27:715–721CrossRef
    Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413PubMed CrossRef
  • 作者单位:A. Durand (1) (2)
    S. Piutti (3) (4)
    M. Rue (1) (2)
    J. L. Morel (1) (2)
    G. Echevarria (1) (2)
    E. Benizri (1) (2)

    1. Laboratoire Sols et Environnement, Université de Lorraine, UMR 1120, 2 avenue de la Forêt de Haye, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
    2. INRA, Laboratoire Sols et Environnement, UMR 1120, 2 avenue de la Forêt de Haye, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
    3. Laboratoire Agronomie et Environnement, Université de Lorraine, UMR 1121, 2 avenue de la Forêt de Haye, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
    4. INRA, Laboratoire Agronomie et Environnement, UMR 1121, 2 avenue de la Forêt de Haye, TSA 40602, Vandoeuvre-lès-Nancy, F-54518, France
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Aim Phytomining is the conception of agro-metallurgical production chains based on cropping hyperaccumulator plants on contaminated or naturally rich (ultramafic) soils to produce high value metal compounds. This study aimed to evaluate the effect of enhancing multispecies hyperaccumulator covers with Plant Growth Promoting Rhizobacteria (PGPR) on Ni phytoextraction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700