Excited States in DNA Strands Investigated by Ultrafast Laser Spectroscopy
详细信息    查看全文
  • 作者:Jinquan Chen (18) (19)
    Yuyuan Zhang (18)
    Bern Kohler (18)
  • 关键词:Base pairing ; Base stacking ; Charge transfer state ; DNA photophysics ; Excimer ; Excited ; state dynamics ; Exciton ; Femtosecond transient absorption ; Proton ; coupled electron transfer
  • 刊名:Topics in Current Chemistry
  • 出版年:2015
  • 出版时间:2015
  • 年:2015
  • 卷:356
  • 期:1
  • 页码:39-87
  • 全文大小:1,712 KB
  • 参考文献:1. Kohler B (2010) J Phys Chem Lett 1:2047
    2. Gustavsson T, Improta R, Markovitsi D (2010) J Phys Chem Lett 1:2025
    3. Crespo-Hernández CE, Cohen B, Hare PM, Kohler B (2004) Chem Rev 104:1977
    4. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B (2009) Annu Rev Phys Chem 60:217
    5. Kleinermanns K, Nachtigallova D, de Vries MS (2013) Int Rev Phys Chem 32:308
    6. Takaya T, Su C, de La Harpe K, Crespo-Hernández CE, Kohler B (2008) Proc Natl Acad Sci USA 105:10285
    7. Schreier WJ, Schrader TE, Koller FO, Gilch P, Crespo-Hernández CE, Swaminathan VN, Carell T, Zinth W, Kohler B (2007) Science 315:625
    8. Schreier WJ, Kubon J, Regner N, Haiser K, Schrader TE, Zinth W, Clivio P, Gilch P (2009) J Am Chem Soc 131:5038
    9. Su C, Middleton CT, Kohler B (2012) J Phys Chem B 116:10266
    10. Ward DC, Reich E, Stryer L (1969) J Biol Chem 244:1228
    11. Rist MJ, Marino JP (2002) Curr Org Chem 6:775
    12. Thompson KC, Miyake N (2005) J Phys Chem B 109:6012
    13. Crespo-Hernández CE, Cohen B, Kohler B (2005) Nature 436:1141
    14. Kang H, Lee KT, Jung B, Ko YJ, Kim SK (2002) J Am Chem Soc 124:12958
    15. Ullrich S, Schultz T, Zgierski MZ, Stolow A (2004) J Am Chem Soc 126:2262
    16. Smith VR, Samoylova E, Ritze HH, Radloff W, Schultz T (2010) Phys Chem Chem Phys 12:9632
    17. Banyasz A, Vayá I, Changenet-Barret P, Gustavsson T, Douki T, Markovitsi D (2011) J Am Chem Soc 133:5163
    18. Towrie M, Grills DC, Dyer J, Weinstein JA, Matousek P, Barton R, Bailey PD, Subramaniam N, Kwok WM, Ma CS, Phillips D, Parker AW, George MW (2003) Appl Spectrosc 57:367
    19. Towrie M, Doorley GW, George MW, Parker AW, Quinn SJ, Kelly JM (2009) Analyst 134:1265
    20. Oliver TAA, Zhang Y, Ashfold MNR, Bradforth SE (2011) Faraday Discuss 150:439
    21. Zhang Y, Chen J, Kohler B (2013) J Phys Chem A 117:6771
    22. Chen J, Thazhathveetil AK, Lewis FD, Kohler B (2013) J Am Chem Soc 135:10290
    23. Kwok W-M, Ma C, Phillips DL (2006) J Am Chem Soc 128:11894
    24. Karunakaran V, Kleinermanns K, Improta R, Kovalenko SA (2009) J Am Chem Soc 131:5839
    25. Pecourt J-ML, Peon J, Kohler B (2000) J Am Chem Soc 122:9348
    26. Pecourt J-ML, Peon J, Kohler B (2001) J Am Chem Soc 123:10370
    27. Crespo-Hernández CE, Kohler B (2004) J Phys Chem B 108:11182
    28. Jou F-Y, Freeman GR (1979) J Phys Chem 83:2383
    29. Hare PM, Crespo-Hernández CE, Kohler B (2007) Proc Natl Acad Sci U S A 104:435
    30. Middleton CT, Cohen B, Kohler B (2007) J Phys Chem A 111:10460
    31. Elles CG, Rivera CA, Zhang Y, Pieniazek PA, Bradforth SE (2009) J Chem Phys 130:13
    32. Kovalenko SA, Dobryakov AL, Ruthmann J, Ernsting NP (1999) Phys Rev A 59:2369
    33. Jailaubekov AE, Bradforth SE (2005) Appl Phys Lett 87
    34. Tauber MJ, Mathies RA, Chen XY, Bradforth SE (2003) Rev Sci Instrum 74:4958
    35. Zhang Y, Improta R, Kohler B (2014) Phys Chem Chem Phys 16:1487
    36. Gustavsson T, Sharonov A, Markovitsi D (2002) Chem Phys Lett 351:195
    37. Peon J, Zewail AH (2001) Chem Phys Lett 348:255
    38. Gustavsson T, Sharonov A, Onidas D, Markovitsi D (2002) Chem Phys Lett 356:49
    39. Pancur T, Schwalb NK, Renth F, Temps F (2005) Chem Phys 313:199
    40. Markovitsi D, Gustavsson T, Talbot F (2007) Photochem Photobiol Sci 6:717
    41. Markovitsi D, Onidas D, Talbot F, Marguet S, Gustavsson T, Lazzarotto E (2006) J Photochem Photobiol. A 183:1
    42. Schweizer MP, Broom AD, Ts'o POP, Hollis DP (1968) J Am Chem Soc 90:1042
    43. Broom AD, Schweizer MP, Ts’o POP (1967) J Am Chem Soc 89:3612
    44. Valdes-Aguilera O, Neckers DC (1989) Acc Chem Res 22:171
    45. Bloomfield VA, Crothers DM, Tinoco I Jr (1974) Physical chemistry of nucleic acids. Harper & Row, New York
    46. Gray DM, Ratliff RL, Vaughan MR (1992) Methods Enzymol 211:389
    47. Woody RW (1995) Biochem Spectroscopy 246:34
    48. Berova N, Di Bari L, Pescitelli G (2007) Chem Soc Rev 36:914
    49. Kypr J, Kejnovska I, Renciuk D, Vorlickova M (2009) Nucleic Acids Res 37:1713
    50. Ke C, Humeniuk M, S-Gracz H, Marszalek PE (2007) Phys Rev Lett 99:018302
    51. Seol Y, Skinner GM, Visscher K, Buhot A, Halperin A (2007) Phys Rev Lett 98:158103
    52. Hatters DM, Wilson L, Atcliffe BW, Mulhern TD, Guzzo-Pernell N, Howlett GJ (2001) Biophys J 81:371
    53. Mills JB, Vacano E, Hagerman PJ (1999) J Mol Biol 285:245
    54. Baná? P, Mládek A, Otyepka M, Zgarbová M, Jure?ka P, Svozil D, Lanka? F, ?poner J (2012) J Chem Theory Comput 8:2448
    55. Chen AA, García AE (2013) Proc Natl Acad Sci U S A 110:16820
    56. Olson WK, Bansal M, Burley SK, Dickerson RE, Gerstein M, Harvey SC, Heinemann U, Lu X-J, Neidle S, Shakked Z, Sklenar H, Suzuki M, Tung C-S, Westhof E, Wolberger C, Berman HM (2001) J Mol Biol 313:229
    57. Rose IA, Hanson KR, Wilkinson KD, Wimmer MJ (1980) Proc Natl Acad Sci U S A 77:2439
    58. Chen J, Kohler B (2014) J Am Chem Soc 136:6362
    59. Olaso-Gon
  • 作者单位:Jinquan Chen (18) (19)
    Yuyuan Zhang (18)
    Bern Kohler (18)

    18. Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
    19. Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
  • ISSN:1436-5049
文摘
Ultrafast laser experiments on carefully selected DNA model compounds probe the effects of base stacking, base pairing, and structural disorder on excited electronic states formed by UV absorption in single and double DNA strands. Direct π-orbital overlap between two stacked bases in a dinucleotide or in a longer single strand creates new excited states that decay orders of magnitude more slowly than the generally subpicosecond excited states of monomeric bases. Half or more of all excited states in single strands decay in this manner. Ultrafast mid-IR transient absorption experiments reveal that the long-lived excited states in a number of model compounds are charge transfer states formed by interbase electron transfer, which subsequently decay by charge recombination. The lifetimes of the charge transfer states are surprisingly independent of how the stacked bases are oriented, but disruption of π-stacking, either by elevating temperature or by adding a denaturing co-solvent, completely eliminates this decay channel. Time-resolved emission measurements support the conclusion that these states are populated very rapidly from initial excitons. These experiments also reveal the existence of populations of emissive excited states that decay on the nanosecond time scale. The quantum yield of these states is very small for UVB/UVC excitation, but increases at UVA wavelengths. In double strands, hydrogen bonding between bases perturbs, but does not quench, the long-lived excited states. Kinetic isotope effects on the excited-state dynamics suggest that intrastrand electron transfer may couple to interstrand proton transfer. By revealing how structure and non-covalent interactions affect excited-state dynamics, on-going experimental and theoretical studies of excited states in DNA strands can advance understanding of fundamental photophysics in other nanoscale systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700