Passive control of wall shear stress and mass transfer generated by submerged lobed impinging jet
详细信息    查看全文
  • 作者:Kodjovi Sodjavi ; Brice Montagné ; Amina Meslem ; Paul Byrne…
  • 刊名:Heat and Mass Transfer
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:52
  • 期:5
  • 页码:925-936
  • 全文大小:2,072 KB
  • 参考文献:1.Husain ZD, Hussain AKMF (1979) Axisymetric mixing layer: influence of the initial and boundary conditions. AIAA J 17(1):48–55CrossRef
    2.Xu G, Antonia RA (2002) Effect of different initial conditions on a turbulent round free jet. Exp Fluids 33:677–683CrossRef
    3.Hussain AKMF, Zaman KBMQ (1981) The ‘preferred mode’ of the axisymmetric jet. J Fluid Mech 110:39–71CrossRef
    4.Hussain F, Husain HS (1989) Elliptic jets. Part 1. Characteristics of unexcited and excited jets. J Fluid Mech 208:257–320CrossRef
    5.Zaman KBMQ, Reeder MF, Samimy M (1994) Control of axisymmetric jet using vortex generators. Phys Fluids 6(2):778–793CrossRef
    6.Gutmark EJ, Grinstein FF (1999) Flow control with noncircular jets. Ann Rev Fluid Mech 31:239–272CrossRef
    7.Gardon R, Akfirat JC (1965) The role of turbulence in determining the heat-transfer characteristics of impinging jets. Int J Heat Mass Transf 8:1261–1272CrossRef
    8.Popiel CO, Boguslawski L (1998) Effect of flow structure on the heat or mass transfer on a flat plate in impinging round jet. In: 2nd UK national conference on heat transfer
    9.Gao N, Sun H, Ewing D (2003) Heat transfer to impinging round jets with triangular tabs. Int J Heat Mass Transf 46(14):2557–2569CrossRef
    10.Lee S-J, Lee J-H, Lee D-H (1994) Local heat transfer measurements from an elliptic jet impinging on a flat plate using liquid crystal. Int J Heat Mass Transf 37(6):967–976CrossRef
    11.Kataoka K, Mizushina T (1974) Local enhancement of the rate of heat-transfer in an impinging round jet by free-stream turbulence. In: Heat transfer 1974; proceedings of the fifth international conference, Tokyo, vol 2, 1974
    12.Lee J, Lee SJ (2000) The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement. Int J Heat Mass Transf 43:3497–3509CrossRef
    13.Violato D et al (2012) Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets. Int J Heat Fluid Flow 37:22–36CrossRef
    14.Roux S et al (2011) Experimental investigation of the flow and heat transfer of an impinging jet under acoustic excitation. Int J Heat Mass Transf 54:3277–3290CrossRef
    15.Ozmen Y, Baydar E (2008) Flow structure and heat transfer characteristics of an unconfined impinging air jet at high jet Reynolds numbers. Heat Mass Transf 44(11):1315–1322CrossRef
    16.Lytle D, Webb BW (1994) Air jet impingement heat transfer at low nozzle-plate spacings. Int J Heat Mass Transf 37(12):1687–1697CrossRef
    17.Katti V, Yasaswy SN, Prabhu SV (2011) Local heat transfer distribution between smooth flat surface and impinging air jet from a circular nozzle at low Reynolds numbers. Heat Mass Transf 47(3):237–244CrossRef
    18.Gardon R, Akfirat JC (1966) Heat transfer characteristics of impinging two-dimensional air jets. J Heat Transf 88(1):101–107CrossRef
    19.Hadziabdic M, Hanjalic K (2008) Vortical structures and heat transfer in a round impinging jet. J Fluid Mech 596:221–260CrossRef MATH
    20.Popiel CO, Trass O (1991) Visualization of a free and impinging round jet. Exp Thermal Fluid Sci 4:253–264CrossRef
    21.Carlomagno GM, Ianiro A (2014) Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: a review. Exp Thermal Fluid Sci 58:15–35CrossRef
    22.El-Hassan M et al (2012) Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp Fluids 52(6):1475–1489CrossRef
    23.Hall JW, Ewing D (2006) On the dynamics of the large-scale structures in round impinging jets. J Fluid Mech 555:439–458CrossRef MATH
    24.Kataoka K et al (1982) Mass transfer between a plane surface and an impinging turbulent jet: the influence of surface-pressure fluctuations. J Fluid Mech 119:91–105CrossRef
    25.Alekseenko SV, Markovich DM (1994) Electrodiffusion diagnostics of wall shear stresses in impinging jet. J Appl Electrochem 24:626–631CrossRef
    26.Phares DJ, Smedley GT, Flagan RC (2000) The wall shear stress produced by the normal impingement of a jet on a flat surface. J Fluid Mech 418:351–375CrossRef MATH
    27.Kristiawan M et al (2012) Wall shear rates and mass transfer in impinging jets: comparison of circular convergent and cross-shaped orifice nozzles. Int J Heat Mass Transf 55:282–293CrossRef
    28.Meslem A et al (2013) Flow dynamics and mass transfer in impinging circular jet at low Reynolds number. Comparison of convergent and orifice nozzles. Int J Heat Mass Transf 67:25–45CrossRef
    29.Bolashikov Z et al (2013) Improved inhaled air quality at reduced ventilation rate by control of airflow interaction at the breathing zone with lobed jets. HVAC&R Res 20(2):238–250CrossRef
    30.Reiss LP, Hanratty TJ (1962) Measurement of instantaneous rates of mass transfer to a small sink on a wall. AIChE J 8(2):245–247CrossRef
    31.Scarano F, Riethmuller ML, Adrian RJ (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(3):S51–S60CrossRef
    32.Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids 29(1):S003–S012
    33.Nastase I, Meslem A, El-Hassan M (2011) Image processing analysis of vortex dynamics of lobed jets from three-dimensional diffusers. Fluid Dyn Res 43(6):065502CrossRef MATH
    34.Baydar E, Ozmen Y (2006) An experimental investigation on flow structures of confined and unconfined impinging air jets. Heat Mass Transfer 42:338–346CrossRef
    35.Glauert MB (1956) The wall jet. J Fluid Mech 1(06):625–643MathSciNet CrossRef MATH
    36.Tummers MJ, Jacobse J, Voorbrood SGJ (2011) Turbulent flow in the near field of a round impinging jet. Int J Heat Mass Transf 54(23–24):4939–4948CrossRef
    37.Xu Z, Hangan H (2008) Scale, boundary and inlet condition effects on impinging jets. J Wind Eng Ind Aerodyn 96(12):2383–2402CrossRef
    38.Sengupta A, Sarkar PP (2008) Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds. J Wind Eng Ind Aerodyn 96(3):345–365CrossRef
    39.Vallis EA, Patrick MA, Wragg AA (1977) Techniques of wall measurements in fluid mechanics. In: Euromech 90, Nancy, France
    40.Angioletti M et al (2003) Simultaneous visualization of flow field and evaluation of local heat transfer by transitional impinging jets. Int J Heat Mass Transf 46(10):1703–1713CrossRef
    41.Lee J, Lee S-J (2000) The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet. Int J Heat Mass Transf 43(4):555–575CrossRef MATH
    42.Colucci DW, Viskanta R (1996) Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Exp Thermal Fluid Sci 13(1):71–80CrossRef
    43.Nastase I, Meslem A, Gervais P (2008) Primary and secondary vortical structures contribution in the entrainment of low Reynolds number jet flows. Exp Fluids 44(6):1027–1033CrossRef
    44.El-Hassan M, Meslem V (2010) Time-resolved stereoscopic PIV investigation of the entrainment in the near-field of circular and daisy-shaped orifice jets. Phys Fluids 22(035107):26MATH
    45.Ball CG, Fellouah H, Pollard A (2012) The flow field in turbulent round free jets. Prog Aerosp Sci 50:1–26CrossRef
    46.Todde V, Spazzini PG, Sandberg M (2009) Experimental analysis of low-Reynolds number free jets. Evolution along the jet centerline and Reynolds number effects. Exp Fluids 47:279–294CrossRef
  • 作者单位:Kodjovi Sodjavi (1)
    Brice Montagné (1)
    Amina Meslem (2)
    Paul Byrne (2)
    Laurent Serres (2)
    Vaclav Sobolik (1)

    1. LaSIE, Pôle Sciences et Technologie, University of La Rochelle, Avenue Michel Crépeau, 17042, La Rochelle, France
    2. LGCGM EA3913, Equipe Matériaux et Thermo-Rhéologie, Université Rennes 1, IUT de Rennes, 3 rue du Clos Courtel, BP 90422, 35704, Rennes Cedex 7, France
  • 刊物类别:Engineering
  • 刊物主题:Engineering Thermodynamics and Transport Phenomena
    Industrial Chemistry and Chemical Engineering
    Thermodynamics
    Physics and Applied Physics in Engineering
    Theoretical and Applied Mechanics
    Engineering Fluid Dynamics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1181
文摘
Particle image velocimetry was used to investigate the flow field in an impinging lobed daisy hemispherical nozzle jet in comparison to its counterpart round jet, at a Reynolds number of 5620 based on the exit velocity and the equivalent diameter D e of the nozzle. The limitations of the PIV technique in the vicinity of the target wall due to the laser scattering were addressed by using the electrodiffusion (ED) technique to determine the wall shear rate distribution. The distribution of the mass transfer coefficient is also obtained using the ED technique. The target wall is placed at a distance H = 2D e from the plane tangent to the nozzle, at the center of the orifice. The entrainment of ambient fluid in the free jet region, which is larger in the lobed jet compared to the round jet, feeds in turn the wall jet region. The maximum wall shear rate was found significantly higher in the daisy jet, with an excess of 93 % compared to the reference round jet. The maximum mass transfer is 35 % higher in the former compared to the latter. Therefore, the hemispherical daisy nozzle is an excellent candidate in passive strategies to enhance local skin-friction and the subsequent local mass transfer at a constant exit Reynolds number.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700