A comparison of Fick and Maxwell–Stefan diffusion formulations in PEMFC gas diffusion layers
详细信息    查看全文
  • 作者:Michael Lindstrom ; Brian Wetton
  • 刊名:Heat and Mass Transfer
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:53
  • 期:1
  • 页码:205-212
  • 全文大小:
  • 刊物类别:Engineering
  • 刊物主题:Engineering Thermodynamics, Heat and Mass Transfer; Industrial Chemistry/Chemical Engineering; Thermodynamics;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-1181
  • 卷排序:53
文摘
This paper explores the mathematical formulations of Fick and Maxwell–Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell–Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models’ seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell–Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700