Progress in bionic information processing techniques for an electronic nose based on olfactory models
详细信息    查看全文
  • 作者:Guang Li (1)
    Jun Fu (2)
    Jia Zhang (3)
    JunBao Zheng (4)
  • 关键词:artificial olfaction ; olfactory model ; pattern recognition ; electronic nose ; bionics
  • 刊名:Chinese Science Bulletin
  • 出版年:2009
  • 出版时间:February 2009
  • 年:2009
  • 卷:54
  • 期:4
  • 页码:521-534
  • 全文大小:985KB
  • 参考文献:1. Gardner J W, Bartlett P N. A brief history of electronic noses. Sens Actuator B-Chem, 1994, 18(1鈥?): 211鈥?20
    2. Persaud K, Dodd G H. Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose. Nature, 1982, 299: 352鈥?55 CrossRef
    3. Rock F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chem Rev, 2008, 108(2): 705鈥?25 CrossRef
    4. Pearce T C, Schiffman S S, Nagle H T, et al. Handbook of Machine Olfaction: Electronic Nose Technology. Weinheim: Wiley-VCH, 2003
    5. James D, Scott S M, Ali Z, et al. Chemical sensors for electronic nose systems. Microchim Acta, 2005, 149(1鈥?): 1鈥?7 CrossRef
    6. Gutierrez-Osuna R. Pattern analysis for machine olfaction: a review. IEEE Sens J, 2002, 2(3): 189鈥?02 CrossRef
    7. Wu C S, Wang L J, Zhou J, et al. The progress of olfactory transduction and biomimetic olfactory-based biosensors. Chin Sci Bull, 2007, 54(14): 1886鈥?896 CrossRef
    8. Lledo P M, Gheusi G, Vincent J D. Information processing in the mammalian olfactory system. Physiol Rev, 2005, 85: 281鈥?17 CrossRef
    9. Firestein S. How the olfactory system makes sense of scents. Nature, 2001, 413: 211鈥?18 CrossRef
    10. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 1991, 65(1): 175鈥?87 CrossRef
    11. Touhara K. Odor discrimination by G protein-coupled olfactory receptors. Microsc Res Tech, 2002, 58(3): 135鈥?41 CrossRef
    12. Mori K, Nagao H, Yoshihara Y. The olfactory bulb: coding and processing of odor molecule information. Science, 1999, 286: 711鈥?15 CrossRef
    13. Zou Z H, Buck L B. Combinatorial effects of odorant mixes in olfactory cortex. Science, 2006, 311: 1477鈥?481 CrossRef
    14. Craven M A, Gardner J W, Bartlett P N. Electronic noses-development and future prospects. Trac Trends Anal Chem, 1996, 15(9): 486鈥?93 CrossRef
    15. Pearce T C. Computational parallels between the biological olfactory pathway and its analogue 鈥榯he electronic nose鈥? Part II. Sensor-based machine olfaction. Biosystems, 1997, 41(2): 69鈥?0 CrossRef
    16. Shaffer R E, Rose-Pehrsson S L, McGill R A. A comparison study of chemical sensor array pattern recognition algorithms. Anal Chim Acta, 1999, 384: 305鈥?17 CrossRef
    17. Haugen J E, Kvaal K. Electronic nose and artificial neural network. Meat Sci, 1998, 49: S273鈥揝286 CrossRef
    18. Haykin S. Neural Networks: A Comprehensive Foundation. 2nd ed. Englewood Cliffs NJ: Prentice-Hall, 1999
    19. Gu F J, Zhang H M, Wang Y J, et al. Nonlinear dynamics problems in neural systems (in Chinese). For Med Sci (Biom Eng Fasc), 1995, 18(4): 187鈥?94
    20. Lv Z D, Yan P F. The necessity of introducing chaos into artificial neural networks (in Chinese). Beijing Biom Eng, 2002, 21(3): 207鈥?11
    21. Simoes de Souza F M, Antunes G. Biophysics of olfaction. Rep Prog Phys, 2007, 70(3): 451鈥?91 CrossRef
    22. White J, Dickinson T A, Walt D R, et al. An olfactory neural network for vapor recognition in an artificial nose. Biol Cybern, 1998, 78(4): 245鈥?51 CrossRef
    23. White J, Hamilton K A, Neff S R, et al. Emergent properties of odor information coding in a representational model of the salamander olfactory bulb. J Neur, 1992, 12(5): 1772鈥?780
    24. Hopfield J J. Pattern recognition computation using action potential timing for stimulus representation. Nature, 1995, 376: 33鈥?6 CrossRef
    25. White J, Kauer J S. Odor recognition in an artificial nose by spatio-temporal processing using an olfactory neuronal network. Neurocomputing, 1999, 26鈥?7: 919鈥?24 CrossRef
    26. Ambros-Ingerson J, Granger R, Lynch G. Simulation of paleocortex performs hierarchical clustering. Science, 1990, 247: 1344鈥?348 CrossRef
    27. Ramanathan M. Statistical model of an electronic olfactory. Masters Dissertations, Oklahoma State University, 1995
    28. Ratton L, Kunt T, McAvoy T, et al. A comparative study of signal processing techniques for clustering microsensor data (a first step towards an artificial nose). Sens Actuators B-Chem, 1997, 41(1鈥?): 105鈥?20 CrossRef
    29. Pearce T C, Verschure P F M J, White J, et al. Robust stimulus en coding in olfactory processing: Hyperacuity and efficient signal transmission. In: Wermter S, Austin J, Willshaw D, eds. Emergent Neural Computation Architectures Based on Neuroscience, Berlin: Springer-Verlag, 2001, 461鈥?79
    30. Koickal T J, Hamilton A, Tan S L, et al. Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Trans Circuits Syst I-Regul Pap, 2007, 54(1): 60鈥?3 CrossRef
    31. Raman B, Yamanaka T, Gutierrez-Osuna R. Contrast enhancement of gas sensor array patterns with a neurodynamics model of the olfactory bulb. Sens Actuators B-Chem, 2006, 119(2): 547鈥?55 CrossRef
    32. Raman B, Gutierrez-Galvez A, Perera-Lluna A, et al. Sensor-based machine olfaction with a neurodynamics model of the olfactory bulb. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 Sep 28鈥揙ct 2, Sendai. New York: Institute of Electrical and Electronics Engineers Inc, 2004. 319鈥?24
    33. Raman B, Gutierrez-Osuna R. Concentration normalization with a model of gain control in the olfactory bulb. Sens Actuators B-Chem, 2006, 116(1鈥?): 36鈥?2 CrossRef
    34. Raman B, Gutierrez-Osuna R. Chemosensory processing in a spiking model of the olfactory bulb: chemotopic convergence and center surround inhibition. Advances in Neural Information Processing Systems, 2004, 17[2004-12-13]. http://books.nips.cc/nips17.html
    35. Freeman W J. Mass Action in the Nervous System. New York: Academic Press, 1975
    36. Yao Y, Freeman W J. Model of biological pattern recognition with spatially chaotic dynamics. Neural Netw, 1990, 3(2): 153鈥?70 CrossRef
    37. Freeman W J. Neurodynamics: An Exploration of Mesoscopic Brain Dynamics. London: Springer-Verlag, 2000
    38. Freeman W J. Nonlinear gain mediating cortical stimulus.response relations. Biol Cybern, 1979, 33(4): 237鈥?47 CrossRef
    39. Chang H J, Freeman W J, Burke B C. Biologically modeled noise stabilizing neurodynamics for pattern recognition. Int J Bifurcation Chaos, 1998, 8(2): 321鈥?45 CrossRef
    40. Chang H J, Freeman W J, Burke B C. Optimization of olfactory model in software to give 1/f power spectra reveals numerical instabilities in solutions governed by aperiodic (chaotic) attractors. Neural Netw, 1998, 11(3): 449鈥?66 CrossRef
    41. Chang H J, Freeman W J. Parameter optimization in models of the olfactory neural system. Neural Netw, 1996, 9(1): 1鈥?4 CrossRef
    42. Ouyang K, Wang Z, Jia W, et al. A study on non-linear dynamics of rabbit鈥檚 olfactory system-mathematical basis of chaos simulation (in Chinese). Beijing Biom Eng, 2002, 21(2): 119鈥?21
    43. Ouyang K, Yang D, Jia W, et al. A study of dynamics of the rabbit鈥檚 olfactory system-a new approach for pattern recognition. In: Anon, eds. Proceedings of International Joint Conference on Neural Networks, 2001 Jul 15鈥?9, Washington DC. New York: Institute of Electrical and Electronics Engineers Inc, 2001. 2: 1077鈥?082
    44. Wang L, Li G, Guo H J, et al. Application of classification of one dimensional sequence using nonlinear model based on olfactory system (in Chinese). J Syst Sim, 2004, 16(3): 564鈥?69
    45. Yang R N, Hu Z Z, Lu J. The simulation and analysis of biological olfactory neural model (in Chinese). J Biom Eng Res, 2006, 3: 131鈥?36
    46. Kozma R, Freeman W J. Classification of EEG patterns using nonlinear dynamics and identifying chaotic phase transitions. Neurocomputing, 2002, 44鈥?6: 1107鈥?112 CrossRef
    47. Shimoide K, Freeman W J. Dynamic neural network derived from the olfactory system with examples of applications. IEICE Trans Fundam Electron Commun Comput Sci, 1995, E78-A(7): 869鈥?84
    48. Li G, Zhang J, Freeman W J. Engineering applications of olfactory model from pattern recognition to artificial olfaction. In: Perlovsky L I, Kozma R, eds. Neurodynamics of Cognition and Consciousness, New York: Springer-Verlag, 2007: 255鈥?76 CrossRef
    49. Yang X L, Fu J, Lou Z G, et al. Tea classification based on artificial olfaction using bionic olfactory neural networks. In: Wang J, Yi Z, Zurada J M, et al, eds. Advances in Neural Networks. New York: Springer-Verlag, 2006. 343鈥?48
    50. Kozma R, Freeman W J. Chaotic resonance-methods and applications for robust classification of noise and variable patterns. Int J Bifurcation Chaos, 2001, 11(6): 1607鈥?629 CrossRef
    51. Fu J, Li G, Qin Y, et al. A pattern recognition method for electronic noses based on an olfactory neural network. Sens Actuators B-Chem, 2007, 125(2): 489鈥?97 CrossRef
    52. Li X, Li G, Wang L, et al. A study on a bionic pattern classifier based on olfactory neural system. Int J Bifurcation Chaos, 2006, 16(8): 2425鈥?434 CrossRef
    53. Fu J, Yang X L, Yang X L, et al. Application of biologically modeled chaotic neural network to pattern recognition in artificial olfaction. In: Anon, eds. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual International Conference, 2005 Sep 1鈥?, Shanghai. Piscataway: Institute of Electrical and Electronics Engineers Inc, 2005. 4666鈥?669
    54. Gutierrez-Galvez A, Gutierrez-Osuna R. Increasing the separability of chemosensor array patterns with Hebbian/anti-Hebbian learning. Sens Actuators B-Chem, 2006, 116(1鈥?): 29鈥?5 CrossRef
    55. Gutierrez-Galvez A, Gutierrez-Osuna R. Contrast enhancement and background suppression of chemosensor array patterns with the KIII model. Int J Intell Syst, 2006, 21(9): 937鈥?53 CrossRef
    56. Gutierrez-Osuna R, Gutierrez-Galvez A. Habituation in the KIII olfactory model with chemical sensor arrays. IEEE Trans Neural Netw, 2003, 14(6): 1565鈥?568 CrossRef
    57. Quarder S, Clau脽nitzer U, Otto M. Using singular-value decompositions to classify spatial patterns generated by a nonlinear dynamic model of the olfactory system. Chemometrics Intell. Lab Syst, 2001, 59(1鈥?): 45鈥?1 CrossRef
    58. Otto M, Quarder S, Clau脽nitzer U, et al. A nonlinear dynamic system for recognizing chemicals based on chemical sensors and optical spectra. In: Proceedings of the 4th World Multiconference on Systemics, Cybernetics and Informatics, 2000 July 23鈥?6, Orlando: International Institute of Informatics and Systemics, 2000. 413鈥?18
    59. Clau脽nitzer U, Quarder S, Otto M. Interpretation of analytical patterns from the output of chaotic dynamical memories. Fresen J Anal Chem, 2001, 369(7鈥?): 698鈥?03
    60. Gutierrez-Galvez A, Gutierrez-Osuna R. Pattern completion through phase coding in population neurodynamics. Neural Netw, 2003, 16(5鈥?): 649鈥?56 CrossRef
    61. Fu J, Li G, Freeman W J. Pattern classification method for electronic noses based on olfactory neural network using time series (in Chinese). Chinese Journal of Sensors and Actuators, 2007, 20(9): 1958鈥?962
    62. Freeman W J. Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern, 1987, 56(2鈥?): 139鈥?50 CrossRef
  • 作者单位:Guang Li (1)
    Jun Fu (2)
    Jia Zhang (3)
    JunBao Zheng (4)

    1. State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China
    2. Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
    3. Sir Run Run Shaw Hospital, Affiliated with the School of Medicine, Zhejiang University, Hangzhou, 310016, China
    4. Faculty of Informatics and Electronics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
  • ISSN:1861-9541
文摘
As a novel bionic analytical technique, an electronic nose, inspired by the mechanism of the biological olfactory system and integrated with modern sensing technology, electronic technology and pattern recognition technology, has been widely used in many areas. Moreover, recent basic research findings in biological olfaction combined with computational neuroscience promote its development both in methodology and application. In this review, the basic information processing principle of biological olfaction and artificial olfaction are summarized and compared, and four olfactory models and their applications to electronic noses are presented. Finally, a chaotic olfactory neural network is detailed and the utilization of several biologically oriented learning rules and its spatiotemporal dynamic propties for electronic noses are discussed. The integration of various phenomena and their mechanisms for biological olfaction into an electronic nose context for information processing will not only make them more bionic, but also perform better than conventional methods. However, many problems still remain, which should be solved by further cooperation between theorists and engineers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700