In Vitro and In Vivo Neuronal Electrotaxis: A Potential Mechanism for Restoration?
详细信息    查看全文
  • 作者:Ali Jahanshahi (1) (2) (4)
    Lisa-Maria Sch?nfeld (1) (3) (4)
    Evi Lemmens (3) (4)
    Sven Hendrix (3) (4)
    Yasin Temel (1) (2) (4)
  • 关键词:Brain repair ; Brain stimulation ; Electrical fields ; Electrotaxis ; Regeneration
  • 刊名:Molecular Neurobiology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:49
  • 期:2
  • 页码:1005-1016
  • 全文大小:648 KB
  • 参考文献:1. Perlmutter JS, Mink JW (2006) Deep brain stimulation. Annu Rev Neurosci 29:229-57
    2. Creed MC, Hamani C, Bridgman A, Fletcher PJ, Nobrega JN (2012) Contribution of decreased serotonin release to the antidyskinetic effects of deep brain stimulation in a rodent model of tardive dyskinesia: comparison of the subthalamic and entopeduncular nuclei. J Neurosci 32(28):9574-581. doi:10.1523/JNEUROSCI.1196-12.2012 CrossRef
    3. Hariz MI, Blomstedt P, Zrinzo L (2010) Deep brain stimulation between 1947 and 1987: the untold story. Neurosurg Focus 29(2):E1. doi:10.3171/2010.4.FOCUS10106 CrossRef
    4. Ranck JB Jr (1970) Electrical impedance changes in many sites of brain in paradoxical sleep, anesthesia, and activity. Exp Neurol 27(3):454-75 CrossRef
    5. Benazzouz A, Hallett M (2000) Mechanism of action of deep brain stimulation. Neurology 55(12 Suppl 6):S13–S16
    6. Kadar E, Lim LW, Carreras G, Genis D, Temel Y, Huguet G (2011) High-frequency stimulation of the ventrolateral thalamus regulates gene expression in hippocampus, motor cortex and caudate-putamen. Brain Res 1391:1-3. doi:10.1016/j.brainres.2011.03.059 CrossRef
    7. Derrick BE, York AD, Martinez JL Jr (2000) Increased granule cell neurogenesis in the adult dentate gyrus following mossy fiber stimulation sufficient to induce long-term potentiation. Brain Res 857(1-):300-07 CrossRef
    8. Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM (2008) The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg 108(1):132-38. doi:10.3171/JNS/2008/108/01/0132 CrossRef
    9. Encinas JM, Hamani C, Lozano AM, Enikolopov G (2011) Neurogenic hippocampal targets of deep brain stimulation. J Comp Neurol 519(1):6-0. doi:10.1002/cne.22503 CrossRef
    10. Stone SS, Teixeira CM, Devito LM, Zaslavsky K, Josselyn SA, Lozano AM, Frankland PW (2011) Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci 31(38):13469-3484. doi:10.1523/JNEUROSCI.3100-11.2011 CrossRef
    11. Brown JA (2003) Editorial. Neurol Res 25:115-17 CrossRef
    12. Brown JA, Lutsep HL, Weinand M, Cramer SC (2006) Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery 58(3):464-73. doi:10.1227/01.NEU.0000197100.63931.04 CrossRef
    13. Levy R, Ruland S, Weinand M, Lowry D, Dafer R, Bakay R (2008) Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy. J Neurosurg 108(4):707-14. doi:10.3171/JNS/2008/108/4/0707 CrossRef
    14. Harvey RL, Winstein CJ (2009) Design for the everest randomized trial of cortical stimulation and rehabilitation for arm function following stroke. Neurorehabil Neural Repair 23(1):32-4. doi:10.1177/1545968308317532 CrossRef
    15. Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S (1991) Treatment of thalamic pain by chronic motor cortex stimulation. Pacing Clin Electrophysiol 14(1):131-34 CrossRef
    16. Kleim JA, Bruneau R, VandenBerg P, MacDonald E, Mulrooney R, Pocock D (2003) Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult. Neurol Res 25(8):789-93 CrossRef
    17. Plautz EJ, Barbay S, Frost SB, Friel KM, Dancause N, Zoubina EV, Stowe AM, Quaney BM, Nudo RJ (2003) Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res 25(8):801-10 CrossRef
    18. Teskey GC, Flynn C, Goertzen CD, Monfils MH, Young NA (2003) Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat. Neurol Res 25(8):794-00 CrossRef
    19. Meng X, Arocena M, Penninger J, Gage FH, Zhao M, Song B (2011) PI3K mediated electrotaxis of embryonic and adult neural progenitor cells in the presence of growth factors. Exp Neurol 227(1):210-17. doi:10.1016/j.expneurol.2010.11.002 CrossRef
    20. Feng JF, Liu J, Zhang XZ, Zhang L, Jiang JY, Nolta J, Zhao M (2012) Guided migration of neural stem cells derived from human embryonic stem cells by an electric field. Stem Cells 30(2):349-55. doi:10.1002/stem.779 CrossRef
    21. Li L, El-Hayek YH, Liu B, Chen Y, Gomez E, Wu X, Ning K, Li L, Chang N, Zhang L, Wang Z, Hu X, Wan Q (2008) Direct-current electrical field guides neuronal stem/progenitor cell migration. Stem Cells 26(8):2193-200. doi:10.1634/stemcells.2007-1022 CrossRef
    22. Morimoto T, Yasuhara T, Kameda M, Baba T, Kuramoto S, Kondo A, Takahashi K, Tajiri N, Wang F, Meng J, Ji YW, Kadota T, Maruo T, Kinugasa K, Miyoshi Y, Shingo T, Borlongan CV, Date I (2011) Striatal stimulation nurtures endogenous neurogenesis and angiogenesis in chronic-phase ischemic stroke rats. Cell Transplant 20(7):1049-064. doi:10.3727/096368910X544915 CrossRef
    23. Sherafat MA, Heibatollahi M, Mongabadi S, Moradi F, Javan M, Ahmadiani A (2012) Electromagnetic field stimulation potentiates endogenous myelin repair by recruiting subventricular neural stem cells in an experimental model of white matter demyelination. J Mol Neurosci 48(1):144-53. doi:10.1007/s12031-012-9791-8 CrossRef
    24. Jahanshahi A, Schonfeld L, Janssen ML, Hescham S, Kocabicak E, Steinbusch HW, van Overbeeke JJ, Temel Y (2013) Electrical stimulation of the motor cortex enhances progenitor cell migration in the adult rat brain. Exp Brain Res 8(8):e73031. doi:10.1007/s00221-013-3680-4
    25. Patel N, Poo MM (1982) Orientation of neurite growth by extracellular electric fields. J Neurosci 2(4):483-96
    26. Yao L, Shanley L, McCaig C, Zhao M (2008) Small applied electric fields guide migration of hippocampal neurons. J Cell Physiol 216(2):527-35. doi:10.1002/jcp.21431 CrossRef
    27. Jeong SH, Jun SB, Song JK, Kim SJ (2009) Activity-dependent neuronal cell migration induced by electrical stimulation. Med Biol Eng Comput 47(1):93-9. doi:10.1007/s11517-008-0426-8 CrossRef
    28. Arocena M, Zhao M, Collinson JM, Song B (2010) A time-lapse and quantitative modelling analysis of neural stem cell motion in the absence of directional cues and in electric fields. J Neurosci Res 88(15):3267-274. doi:10.1002/jnr.22502 CrossRef
    29. Yao L, McCaig CD, Zhao M (2009) Electrical signals polarize neuronal organelles, direct neuron migration, and orient cell division. Hippocampus 19(9):855-68. doi:10.1002/hipo.20569 CrossRef
    30. Zhang J, Calafiore M, Zeng Q, Zhang X, Huang Y, Li RA, Deng W, Zhao M (2011) Electrically guiding migration of human induced pluripotent stem cells. Stem Cell Rev 7(4):987-96. doi:10.1007/s12015-011-9247-5 CrossRef
    31. Alexander JK, Fuss B, Colello RJ (2006) Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biol 2(2):93-03. doi:10.1017/S1740925X0600010X CrossRef
    32. Jun SB, Hynd MR, Smith KL, Song JK, Turner JN, Shain W, Kim SJ (2007) Electrical stimulation-induced cell clustering in cultured neural networks. Med Biol Eng Comput 45(11):1015-021. doi:10.1007/s11517-007-0218-6 CrossRef
    33. Babona-Pilipos R, Droujinine IA, Popovic MR, Morshead CM (2011) Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields. PLOS ONE 6(8):e23808. doi:10.1371/journal.pone.0023808 CrossRef
    34. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963-70. doi:10.1038/nm747 CrossRef
    35. Jahanshahi A, Temel Y, Lim LW, Hoogland G, Steinbusch HW (2011) Close communication between the subependymal serotonergic plexus and the neurogenic subventricular zone. J Chem Neuroanat 42(4):297-03. doi:10.1016/j.jchemneu.2011.09.001 CrossRef
    36. Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A 93(25):14895-4900 CrossRef
    37. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315(5816):1243-249 CrossRef
    38. Keller R (2005) Cell migration during gastrulation. Curr Opin Cell Biol 17(5):533-41. doi:10.1016/j.ceb.2005.08.006 CrossRef
    39. Ayala R, Shu T, Tsai LH (2007) Trekking across the brain: the journey of neuronal migration. Cell 128(1):29-3. doi:10.1016/j.cell.2006.12.021 CrossRef
    40. Hatten ME (2002) New directions in neuronal migration. Science 297(5587):1660-663. doi:10.1126/science.1074572 297/5587/1660 CrossRef
    41. Kolb B, Morshead C, Gonzalez C, Kim M, Gregg C, Shingo T, Weiss S (2007) Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats. J Cereb Blood Flow Metab 27(5):983-97. doi:10.1038/sj.jcbfm.9600402
    42. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52(6):802-13. doi:10.1002/ana.10393 CrossRef
    43. Teramoto T, Qiu J, Plumier JC, Moskowitz MA (2003) EGF amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia. J Clin Invest 111(8):1125-132. doi:10.1172/JCI17170 CrossRef
    44. Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10(Suppl):S42–S50 CrossRef
    45. Okano H, Sawamoto K (2008) Neural stem cells: involvement in adult neurogenesis and CNS repair. Philos Trans R Soc Lond B Biol Sci 363(1500):2111-122. doi:10.1098/rstb.2008.2264 CrossRef
    46. Mogilner A (2009) Mathematics of cell motility: have we got its number? J Math Biol 58(1-):105-34. doi:10.1007/s00285-008-0182-2 CrossRef
    47. Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244(4906):798-00 CrossRef
    48. van Dijk A, Klompmakers AA, Feenstra MG, Denys D (2012) Deep brain stimulation of the accumbens increases dopamine, serotonin, and noradrenaline in the prefrontal cortex. J Neurochem 123(6):897-03. doi:10.1111/jnc.12054 CrossRef
    49. Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD (2013) Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 10(1):106. doi:10.1186/1742-2094-10-106 CrossRef
    50. Yang SH, Gangidine M, Pritts TA, Goodman MD, Lentsch AB (2013) IL-6 mediates neuroinflammation and motor coordination deficits after mild traumatic brain injury and brief hypoxia in mice. Shock. doi:10.1097/SHK.0000000000000037
    51. Yanamoto H, Nakajo Y, Kataoka H, Iihara K (2013) High voltage electric potentials to enhance brain-derived neurotrophic factor levels in the brain. Front Neurol Neurosci 32:129-38. doi:10.1159/000346422 CrossRef
    52. McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85(3):943-78. doi:10.1152/physrev.00020.2004 CrossRef
    53. Mycielska ME, Djamgoz MB (2004) Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci 117(Pt 9):1631-639. doi:10.1242/jcs.01125 CrossRef
    54. Robinson KR, Messerli MA (2003) Left/right, up/down: the role of endogenous electrical fields as directional signals in development, repair and invasion. Bioessays 25(8):759-66. doi:10.1002/bies.10307 CrossRef
    55. Nuccitelli R (1988) Ionic currents in morphogenesis. Experientia 44(8):657-66 CrossRef
    56. Nuccitelli R (1988) Physiological electric fields can influence cell motility, growth and polarity. Adv Cell Biol 2:213-33 CrossRef
    57. Borgens RB, Shi R (1995) Uncoupling histogenesis from morphogenesis in the vertebrate embryo by collapse of the transneural tube potential. Dev Dyn 203(4):456-67. doi:10.1002/aja.1002030408 CrossRef
    58. Shi R, Borgens RB (1994) Embryonic neuroepithelial sodium transport, the resulting physiological potential, and cranial development. Dev Biol 165(1):105-16. doi:10.1006/dbio.1994.1238 CrossRef
    59. Nuccitelli R (2003) A role for endogenous electric fields in wound healing. Curr Top Dev Biol 58:1-6 CrossRef
    60. Nuccitelli R (2003) Endogenous electric fields in embryos during development, regeneration and wound healing. Radiat Prot Dosim 106(4):375-83 CrossRef
    61. Borgens RB, Jaffe LF, Cohen MJ (1980) Large and persistent electrical currents enter the transected lamprey spinal cord. Proc Natl Acad Sci U S A 77(2):1209-213 CrossRef
    62. Song B, Zhao M, Forrester JV, McCaig CD (2002) Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci U S A 99(21):13577-3582. doi:10.1073/pnas.202235299 CrossRef
    63. McCaig CD, Song B, Rajnicek AM (2009) Electrical dimensions in cell science. J Cell Sci 122(Pt 23):4267-276. doi:10.1242/jcs.023564 CrossRef
    64. McKasson MJ, Huang L, Robinson KR (2008) Chick embryonic Schwann cells migrate anodally in small electrical fields. Exp Neurol 211(2):585-87. doi:10.1016/j.expneurol.2008.02.015 CrossRef
    65. Moriarty LJ, Borgens RB (2001) An oscillating extracellular voltage gradient reduces the density and influences the orientation of astrocytes in injured mammalian spinal cord. J Neurocytol 30(1):45-7 CrossRef
    66. Zhao M (2009) Electrical fields in wound healing—an overriding signal that directs cell migration. Semin Cell Dev Biol 20(6):674-82. doi:10.1016/j.semcdb.2008.12.009 CrossRef
    67. Temel Y, Visser-Vandewalle V, van der Wolf M, Spincemaille GH, Desbonnet L, Hoogland G, Steinbusch HW (2004) Monopolar versus bipolar high frequency stimulation in the rat subthalamic nucleus: differences in histological damage. Neurosci Lett 367(1):92-6. doi:10.1016/j.neulet.2004.05.087 CrossRef
    68. Tamamaki N (2002) Radial glias and radial fibers: what is the function of radial fibers? Anat Sci Int 77(1):2-1. doi:10.1046/j.0022-7722.2002.00013.x CrossRef
    69. Borgens RB, Shi R, Mohr TJ, Jaeger CB (1994) Mammalian cortical astrocytes align themselves in a physiological voltage gradient. Exp Neurol 128(1):41-9. doi:10.1006/exnr.1994.1111 CrossRef
    70. Salimi I, Friel KM, Martin JH (2008) Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade. J Neurosci 28(29):7426-434. doi:10.1523/JNEUROSCI.1078-08.2008 CrossRef
    71. Hart FX, Laird M, Riding A, Pullar CE (2012) Keratinocyte galvanotaxis in combined DC and AC electric fields supports an electromechanical transduction sensing mechanism. Bioelectromagnetics 34(2):85-4. doi:10.1002/bem.21748 CrossRef
    72. Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester JV, Bourne HR, Devreotes PN, McCaig CD, Penninger JM (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442(7101):457-60. doi:10.1038/nature04925 CrossRef
    73. Ozkucur N, Perike S, Sharma P, Funk RH (2011) Persistent directional cell migration requires ion transport proteins as direction sensors and membrane potential differences in order to maintain directedness. BMC Cell Biol 12:4. doi:10.1186/1471-2121-12-4 CrossRef
    74. Bielas SL, Gleeson JG (2004) Cytoskeletal-associated proteins in the migration of cortical neurons. J Neurobiol 58(1):149-59. doi:10.1002/neu.10280 CrossRef
    75. Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S, Matsuura Y, Iwamatsu A, Perez F, Kaibuchi K (2002) Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109(7):873-85 CrossRef
    76. Fukata M, Nakagawa M, Kaibuchi K (2003) Roles of rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol 15(5):590-97 CrossRef
    77. Hannigan M, Zhan L, Li Z, Ai Y, Wu D, Huang CK (2002) Neutrophils lacking phosphoinositide 3-kinase gamma show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc Natl Acad Sci U S A 99(6):3603-608. doi:10.1073/pnas.052010699 CrossRef
    78. Ayoob JC, Yu HH, Terman JR, Kolodkin AL (2004) The Drosophila receptor guanylyl cyclase Gyc76C is required for semaphorin-1a-plexin A-mediated axonal repulsion. J Neurosci 24(30):6639-649. doi:10.1523/JNEUROSCI.1104-04.2004 CrossRef
    79. Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435(7046):1239-243. doi:10.1038/nature03650 CrossRef
    80. Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106(4):489-98 CrossRef
    81. Perret S, Cantereau A, Audin J, Dufy B, Georgescauld D (1999) Interplay between Ca2+ release and Ca2+ influx underlies localized hyperpolarization-induced [Ca2+]i waves in prostatic cells. Cell Calcium 25(4):297-11. doi:10.1054/ceca.1999.0030 CrossRef
    82. Borys P (2012) On the biophysics of cathodal galvanotaxis in rat prostate cancer cells: Poisson–Nernst–Planck equation approach. Eur Biophys J 41(6):527-34. doi:10.1007/s00249-012-0807-7 CrossRef
    83. Rees DA, Charlton J, Ataliotis P, Woods A, Stones AJ, Bayley SA (1989) Myosin regulation and calcium transients in fibroblast shape change, attachment, and patching. Cell Motil Cytoskeleton 13(2):112-22. doi:10.1002/cm.970130206 CrossRef
    84. Li F, Wang H, Li L, Huang C, Lin J, Zhu G, Chen Z, Wu N, Feng H (2012) Superoxide plays critical roles in electrotaxis of fibrosarcoma cells via activation of ERK and reorganization of the cytoskeleton. Free Radic Biol Med 52(9):1888-896. doi:10.1016/j.freeradbiomed.2012.02.04888 CrossRef
    85. Zhao M, Penninger J, Isseroff RR (2010) Electrical activation of wound-healing pathways. Adv Skin Wound Care 1:567-73. doi:10.1089/9781934854013.567
    86. Hartwig JH, Thelen M, Rosen A, Janmey PA, Nairn AC, Aderem A (1992) MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium–calmodulin. Nature 356(6370):618-22. doi:10.1038/356618a0 CrossRef
    87. Nuccitelli R, Smart T, Ferguson J (1993) Protein kinases are required for embryonic neural crest cell galvanotaxis. Cell Motil Cytoskeleton 24(1):54-6. doi:10.1002/cm.970240107 CrossRef
    88. Onuma EK, Hui SW (1988) Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent. J Cell Biol 106(6):2067-075 CrossRef
    89. Turner DJ, Mulholland MW (1999) Calcium signaling pathways in the enteric nervous system. Int J Surg Invest 1(2):87-7
    90. Djamgoz MBA, Mycielska M, Madeja Z, Fraser SP, Korohoda W (2001) Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltagegated Na+ channel activity. J Cell Sci 114(Pt 14):2697-705
    91. Wehrle-Haller B, Imhof BA (2003) Actin, microtubules and focal adhesion dynamics during cell migration. Int J Biochem Cell Biol 35(1):39-0 CrossRef
    92. Sheng M, Kim E (1996) Ion channel associated proteins. Curr Opin Neurobiol 6(5):602-08 CrossRef
    93. Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BF, Scheuer T, Catterall WA (1995) Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83(3):433-42 CrossRef
    94. Etienne-Manneville S, Hall A (2003) Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 421(6924):753-56. doi:10.1038/nature01423 CrossRef
    95. Cao L, Pu J, Zhao M (2011) GSK-3beta is essential for physiological electric field-directed Golgi polarization and optimal electrotaxis. Cell Mol Life Sci 68(18):3081-093. doi:10.1007/s00018-010-0608-z CrossRef
    96. Zhao M, Dick A, Forrester JV, McCaig CD (1999) Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol Biol Cell 10(4):1259-276 CrossRef
    97. Fang KS, Ionides E, Oster G, Nuccitelli R, Isseroff RR (1999) Epidermal growth factor receptor relocalization and kinase activity are necessary for directional migration of keratinocytes in DC electric fields. J Cell Sci 112(Pt 12):1967-978
    98. Maher PA (1996) Nuclear Translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol 134(2):529-36 CrossRef
    99. Guo D, Tan YC, Wang D, Madhusoodanan KS, Zheng Y, Maack T, Zhang JJ, Huang XY (2007) A Rac-cGMP signaling pathway. Cell 128(2):341-55. doi:10.1016/j.cell.2006.11.048 CrossRef
  • 作者单位:Ali Jahanshahi (1) (2) (4)
    Lisa-Maria Sch?nfeld (1) (3) (4)
    Evi Lemmens (3) (4)
    Sven Hendrix (3) (4)
    Yasin Temel (1) (2) (4)

    1. Department of Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
    2. Department of Neurosurgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, the Netherlands
    4. European Graduate School of Neuroscience (EURON), Maastricht, the Netherlands
    3. Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
  • ISSN:1559-1182
文摘
Electrical brain stimulation used to treat a variety of neurological and psychiatric diseases is entering a new period. The technique is well established and the potential complications are well known and generally manageable. Recent studies demonstrated that electrical fields (EFs) can enhance neuroplasticity-related processes. EFs applied in the physiological range induce migration of different neural cell types from different species in vitro. There are some evidences that also the speed and directedness of cell migration are enhanced by EFs. However, it is still unclear how electrical signals from the extracellular space are translated into intracellular actions resulting in the so-called electrotaxis phenomenon. Here, we aim to provide a comprehensive review of the data on responses of cells to electrical stimulation and the relation to functional recovery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700