Collective Migration Exhibits Greater Sensitivity But Slower Dynamics of Alignment to Applied Electric Fields
详细信息    查看全文
  • 作者:Mark L. Lalli ; Anand R. Asthagiri
  • 关键词:Cell–cell interactions ; Directional bias ; Electrotaxis ; Persistence
  • 刊名:Cellular and Molecular Bioengineering
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:8
  • 期:2
  • 页码:247-257
  • 全文大小:2,450 KB
  • 参考文献:1.Adams, D. S., and M. Levin. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res. 352:95-22, 2013.View Article
    2.Bai, H., C. D. McCaig, J. V. Forrester, and M. Zhao. DC electric fields induce distinct preangiogenic responses in microvascular and macrovascular cells. Arterioscler. Thromb. Vasc. Biol. 24:1234-239, 2004.View Article
    3.Berens, P. J. CircStat: a MATLAB toolbox for circular statistics. Stat. Softw. 31:1-1, 2009.MathSciNet
    4.Carey, S. P., A. Starchenko, A. L. McGregor, and C. A. Reinhart-King. Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model. Clin. Exp. Metastasis 30:615-30, 2013.View Article
    5.Conant, C. G., J. T. Nevill, M. Schwartz, and C. Ionescu-Zanetti. Wound healing assays in well plate–coupled microfluidic devices with controlled parallel flow. J. Assoc. Lab. Autom. 15:52-7, 2010.View Article
    6.Cuzick, J., R. Holland, V. Barth, R. Davies, M. Faupel, I. Fentiman, H. J. Frischbier, J. L. LaMarque, M. Merson, V. Sacchini, D. Vanel, and U. Veronesi. Electropotential measurements as a new diagnostic modality for breast cancer. Lancet 352:359-63, 1998.View Article
    7.Debruyne, P. R., E. A. Bruyneel, I.-M. Karaguni, X. Li, G. Flatau, O. Müller, A. Zimber, C. Gespach, and M. M. Mareel. Bile acids stimulate invasion and haptotaxis in human colorectal cancer cells through activation of multiple oncogenic signaling pathways. Oncogene 21:6740-750, 2002.View Article
    8.Djamgoz, M. B. A., M. Mycielska, Z. Madeja, S. P. Fraser, and W. Korohoda. Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage gated Na+ channel activity. J. Cell Sci. 114:2697-705, 2001.
    9.Einstein, A. über die von der molekularkinetischen Theorie der W?rme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322:549-60, 1905.View Article
    10.Fogg, V. C., C.-J. Liu, and B. Margolis. Multiple regions of Crumbs3 are required for tight junction formation in MCF10A cells. J. Cell Sci. 118:2859-869, 2005.View Article
    11.Foulds, A. T., and I. S. Barker. Human skin battery potentials and their possible role in wound healing. Br. J. Dermatol 109:515-22, 1983.View Article
    12.Gibot, L., L. Wasungu, J. Teissié, and M.-P. Rols. Antitumor drug delivery in multicellular spheroids by electropermeabilization. J. Control. Release 167:138-47, 2013.View Article
    13.Huang, C.-W., J.-Y. Cheng, M.-H. Yen, and T.-H. Young. Electrotaxis of lung cancer cells in a multiple-electric-field chip. Biosens. Bioelectron. 24:3510-516, 2009.View Article
    14.Kim, J.-H., L. J. Dooling, and A. R. Asthagiri. Intercellular mechanotransduction during multicellular morphodynamics. J. R. Soc. Interface 7:S341–S350, 2010.View Article
    15.Kloth, L. C. Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int. J. Low. Extrem. Wounds 4:23-4, 2005.View Article
    16.Kushiro, K., and A. R. Asthagiri. Modular design of micropattern geometry achieves combinatorial enhancements in cell motility. Langmuir 28:4357-362, 2012.View Article
    17.Lamalice, L., F. Le Boeuf, and J. Huot. Endothelial cell migration during angiogenesis. Circ. Res. 100:782-94, 2007.View Article
    18.Lehmann, K., A. Rickenbacher, J.-H. Jang, C. E. Oberkofler, R. Vonlanthen, L. von Boehmer, B. Humar, R. Graf, P. Gertsch, and P.-A. Clavien. New insight into hyperthermic intraperitoneal chemotherapy: induction of oxidative stress dramatically enhanced tumor killing in in vitro and in vivo models. Ann. Surg. 256:730-37; discussion 737-38, 2012.
    19.Li, L., R. Hartley, B. Reiss, Y. Sun, J. Pu, D. Wu, F. Lin, T. Hoang, S. Yamada, J. Jiang, and M. Zhao. E-cadherin plays an essential role in collective directional migration of large epithelial sheets. Cell. Mol. Life Sci. 69:2779-789, 2012.View Article
    20.Lin, F., F. Baldessari, T. Gyenge, C. Crenguta Sato, R. D. Chambers, J. G. Santiago, and E. C. Butcher, Lymphocyte electrotaxis in vitro and in vivo. J. Immunol. 181:2465-471, 2008.
    21.Long, H., G. Yang, and Z. Wang. Galvanotactic migration of EA.Hy926 endothelial cells in a novel designed electric field bioreactor. Cell Biochem. Biophys. 61:481-91, 2011.
    22.Merks, R. M. H., E. D. Perryn, A. Shirinifard, and J. A. Glazier. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4:e1000163, 2008.View Article MathSciNet
    23.Mycielska, M. E., and M. B. A. Djamgoz. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J. Cell Sci. 117:1631-639, 2004.View Article
    24.Ng, M. R., A. Besser, G. Danuser, and J. S. Brugge. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contract
  • 作者单位:Mark L. Lalli (1)
    Anand R. Asthagiri (1) (2)

    1. Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
    2. Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
  • 刊物类别:Engineering
  • 刊物主题:Biomedical Engineering
    Mechanics
    Continuum Mechanics and Mechanics of Materials
    Biophysics and Biomedical Physics
    Cell Biology
  • 出版者:Springer New York
  • ISSN:1865-5033
文摘
During development and disease, cells migrate collectively in response to gradients in physical, chemical and electrical cues. Despite its physiological significance and potential therapeutic applications, electrotactic collective cell movement is relatively less well understood. Here, we analyze the combined effect of intercellular interactions and electric fields on the directional migration of non-transformed mammary epithelial cells, MCF-10A. Our data show that clustered cells exhibit greater sensitivity to applied electric fields but align more slowly than isolated cells. Clustered cells achieve half-maximal directedness with an electric field that is 50% weaker than that required by isolated cells; however, clustered cells take ~2- fold longer to align. This trade-off in greater sensitivity and slower dynamics correlates with the slower speed and intrinsic directedness of collective movement even in the absence of an electric field. Whereas isolated cells exhibit a persistent random walk, the trajectories of clustered cells are more ballistic as evidenced by the superlinear dependence of their mean square displacement on time. Thus, intrinsically-directed, slower clustered cells take longer to redirect and align with an electric field. These findings help to define the operating space and the engineering trade-offs for using electric fields to affect cell movement in biomedical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700