A microfluidic device for studying the production of reactive oxygen species and the migration in lung cancer cells under single or coexisting chemical/electrical stimulation
详细信息    查看全文
  • 作者:Kai-Yin Lo ; Shang-Ying Wu ; Yung-Shin Sun
  • 关键词:Microfluidics ; Reactive oxygen species (ROS) ; Cell migration ; Electrotaxis
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 全文大小:1,418 KB
  • 参考文献:Al-Majed AA, Neumann CM, Brushart TM, Gordon T (2000) Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci 20:2602–2608
    Benzi G, Moretti A (1995) Are reactive oxygen species involved in Alzheimer’s disease? Neurobiol Aging 16:661–674CrossRef
    Bruzzese F, Rocco M, Castelli S, Di Gennaro E, Desideri A, Budillon A (2009) Synergistic antitumor effect between vorinostat and topotecan in small cell lung cancer cells is mediated by generation of reactive oxygen species and DNA damage-induced apoptosis. Mol Cancer Ther 8:3075–3087. doi:10.​1158/​1535-7163.​MCT-09-0254 CrossRef
    Cassarino DS et al (1997) Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochim Biophys Acta 1362:77–86CrossRef
    Chen JJW et al (2001) Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 61:5223–5230
    Cheng JY, Wei CW, Hsu KH, Young TH (2004) Direct-write laser micromachining and universal surface modification of PMMA for device development. Sens Actuators B Chem 99:186–196. doi:10.​1016/​j.​snb.​2003.​10.​022 CrossRef
    Cheng JY, Yen MH, Wei CW, Chuang YC, Young TH (2005) Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip. J Micromech Microeng 15:1147–1156. doi:10.​1088/​0960-1317/​15/​6/​005 CrossRef
    Cheng JY, Yen MH, Kuo CT, Young TH (2008) A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier. Biomicrofluidics. doi:10.​1063/​1.​2952290
    Djamgoz MBA, Mycielska M, Madeja Z, Fraser SP, Korohoda W (2001) Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage-gated Na+ channel activity. J Cell Sci 114:2697–2705
    Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984. doi:10.​1021/​ac980656z CrossRef
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. doi:10.​1038/​35041687 CrossRef
    Fried LE, Arbiser JL (2009) Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid Redox Signal 11:1139–1148CrossRef
    Gamboa OL, Pu J, Townend J, Forrester JV, Zhao M, McCaig C, Lois N (2010) Electrical estimulation of retinal pigment epithelial cells. Exp Eye Res 91:195–204. doi:10.​1016/​j.​exer.​2010.​04.​018 CrossRef
    Hammerick KE, Longaker MT, Prinz FB (2010) In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun 397:12–17. doi:10.​1016/​j.​bbrc.​2010.​05.​003 CrossRef
    Harrison DJ, Manz A, Fan ZH, Ludi H, Widmer HM (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 64:1926–1932CrossRef
    Hou HS, Tsai HF, Chiu HT, Cheng JY (2014) Simultaneous chemical and electrical stimulation on lung cancer cells using a multichannel-dual-electric-field chip. Biomicrofluidics 8:052007CrossRef
    Huang CW, Cheng JY, Yen MH, Young TH (2009) Electrotaxis of lung cancer cells in a multiple-electric-field chip. Biosens Bioelectron 24:3510–3516. doi:10.​1016/​j.​bios.​2009.​05.​001 CrossRef
    Hughes-Alford SK, Lauffenburger DA (2012) Quantitative analysis of gradient sensing: towards building predictive models of chemotaxis in cancer. Curr Opin Cell Biol 24:284–291CrossRef
    Hulsmans M, Van Dooren E, Holvoet P (2012) Mitochondrial reactive oxygen species and risk of atherosclerosis. Curr Atheroscler Rep 14:264–276. doi:10.​1007/​s11883-012-0237-0 CrossRef
    Kao YC et al. (2014) Modulating chemotaxis of lung cancer cells by using electric fields in a microfluidic device. Biomicrofluidics 8:024107CrossRef
    Korohoda W, Mycielska M, Janda E, Madeja Z (2000) Immediate and long-term galvanotactic responses of Amoeba proteus to DC electric fields. Cell Motil Cytoskel 45:10–26CrossRef
    Lee JH, Kim HL, Lee MH, You KE, Kwon BJ, Seo HJ, Park JC (2012) Asiaticoside enhances normal human skin cell migration, attachment and growth in vitro wound healing model. Phytomedicine 19:1223–1227CrossRef
    Lees JG et al (2013) Tropomyosin regulates cell migration during skin wound healing. J Invest Dermatol 133:1330–1339CrossRef
    Li J, Nandagopal S, Wu D, Romanuik SF, Paul K, Thomson DJ, Lin F (2011) Activated T lymphocytes migrate toward the cathode of DC electric fields in microfluidic devices. Lab Chip 11:1298–1304. doi:10.​1039/​C0lc00371a CrossRef
    Li J, Zhu L, Zhang M, Lin F (2012) Microfluidic device for studying cell migration in single or co-existing chemical gradients and electric fields. Biomicrofluidics 6:024121CrossRef
    Lin F, Baldessari F, Gyenge CC, Sato T, Chambers RD, Santiago JG, Butcher EC (2008) Lymphocyte electrotaxis in vitro and in vivo. J Immunol 181:2465–2471CrossRef
    Little CD (2013) Integrating cell and tissue motion patterns during early embryogenesis: How much “Cell Migration” really occurs? Faseb J 27(Meeting Abstract Supplement):312.3
    Lo KY, Zhu Y, Tsai HF, Sun YS (2013) Effects of shear stresses and antioxidant concentrations on the production of reactive oxygen species in lung cancer cells. Biomicrofluidics 7:64108. doi:10.​1063/​1.​4836675 CrossRef
    Madhyastha H, Madhyastha R, Nakajima Y, Omura S, Maruyama M (2012) Regulation of growth factors-associated cell migration by C-phycocyanin scaffold in dermal wound healing. Clin Exp Pharmacol Physiol 39:13–19CrossRef
    Maizels Y, Rosenfeld YBZ, Oberman F, Fridlender Z, Yisraeli JK (2014) Roles for Vickz proteins in cell migration cancer progression and metastasis. Anticancer Res 34:6249
    Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Widmer HM (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems—capillary electrophoresis on a chip. J Chromatogr 593:253–258CrossRef
    Mazzag BC, Zhulin IB, Mogilner A (2003) Model of bacterial band formation in aerotaxis. Biophys J 85:3558–3574CrossRef
    McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978CrossRef
    McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499. doi:10.​1021/​Ar010110q CrossRef
    Minc N, Chang F (2010) Electrical control of cell polarization in the fission yeast Schizosaccharomyces pombe. Curr Biol 20:710–716. doi:10.​1016/​j.​cub.​2010.​02.​047 CrossRef
    Mori I, Ohshima Y (1995) Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376:344–348. doi:10.​1038/​376344a0 CrossRef
    Nediani C, Raimondi L, Borchi E, Cerbai E (2011) Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antioxid Redox Signal 14:289–331. doi:10.​1089/​ars.​2010.​3198 CrossRef
    Nuccitelli R (2003) Endogenous electric fields in embryos during development, regeneration and wound healing. Radiat Prot Dosim 106:375–383CrossRef
    Popp F, Armitage JP, Schuler D (2014) Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway. Nat Commun 5:5398CrossRef
    Pu J, McCaig CD, Cao L, Zhao ZQ, Segall JE, Zhao M (2007) EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. J Cell Sci 120:3395–3403. doi:10.​1242/​Jcs.​002774 CrossRef
    Roussos ET, Condeelis JS, Patsialou A (2011) Chemotaxis in cancer. Nat Rev Cancer 11:573–587CrossRef
    Roxanis I, Russell J, Lavery B (2013) Pattern of tumour cell migration as a prognostic parameter for lymph node metastasis in HER2-enriched breast cancer. Mod Pathol 26:65a–66a
    Sato MJ, Ueda M, Takagi H, Watanabe TM, Yanagida T, Ueda M (2007) Input–output relationship in galvanotactic response of Dictyostelium cells. Biosystems 88:261–272. doi:10.​1016/​j.​biosystems.​2006.​06.​008 CrossRef
    Shen JL et al (2010) Honokiol and magnolol as multifunctional antioxidative molecules for dermatologic disorders. Molecules 15:6452–6465CrossRef
    Shi JX, Liu HC, Yao F, Zhong CX, Zhao H (2014) Upregulation of mediator MED23 in non-small-cell lung cancer promotes the growth, migration, and metastasis of cancer cells. Tumor Biol 35:12005–12013CrossRef
    Shih JY et al (2001) Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. J Natl Cancer Inst 93:1392–1400. doi:10.​1093/​jnci/​93.​18.​1392 CrossRef
    Singh T, Katiyar SK (2013) Honokiol inhibits non-small cell lung cancer cell migration by targeting PGE(2)-mediated activation of beta-catenin signaling. PLoS ONE 8(4):e60749CrossRef
    Singh T, Prasad R, Katiyar SK (2013) Inhibition of class I histone deacetylases in non-small cell lung cancer by honokiol leads to suppression of cancer cell growth and induction of cell death in vitro and in vivo. Epigenetics 8:54–65CrossRef
    Sun YS, Peng SW, Lin KH, Cheng JY (2012) Electrotaxis of lung cancer cells in ordered three-dimensional scaffolds. Biomicrofluidics 6:014102CrossRef
    Tai G, Reid B, Cao L, Zhao M (2009) Electrotaxis and wound healing: experimental methods to study electric fields as a directional signal for cell migration. Methods Mol Biol 571:77–97. doi:10.​1007/​978-1-60761-198-1_​5 CrossRef
    Terry SC, Jerman JH, Angell JB (1979) Gas-chromatographic air analyzer fabricated on a silicon-wafer. IEEE Trans Electron Device 26:1880–1886CrossRef
    Tsai HF, Peng SW, Wu CY, Chang HF, Cheng JY (2012) Electrotaxis of oral squamous cell carcinoma cells in a multiple-electric-field chip with uniform flow field. Biomicrofluidics 6:034116CrossRef
    Tsai HF, Huang CW, Chang HF, Chen JJW, Lee CH, Cheng JY (2013) Evaluation of EGFR and RTK signaling in the electrotaxis of lung adenocarcinoma cells under direct-current electric field stimulation. PLoS ONE 8(8):e73418CrossRef
    Urbano JM, Dominguez-Gimenez P, Estrada B, Martin-Bermudo MD (2011) PS integrins and laminins: key regulators of cell migration during Drosophila embryogenesis. PLoS ONE 6(9):e23893CrossRef
    Vincent LG, Choi YS, Alonso-Latorre B, del Alamo JC, Engler AJ (2013) Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol J 8:472–484CrossRef
    Wei CW, Cheng JY, Huang CT, Yen MH, Young TH (2005) Using a microfluidic device for 1 mu l DNA microarray hybridization in 500 s. Nucleic Acids Res 33:e78. doi:10.​1093/​nar/​gni078 CrossRef
    Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373. doi:10.​1146/​annurev.​bioeng.​3.​1.​335 CrossRef
    Wu SY, Hou HS, Sun YS, Cheng JY, Lo KY (2015) Correlation between cell migration and reactive oxygen species under electric field stimulation. Biomicrofluidics. doi:10.​1063/​1.​4932662
    Yan XL et al (2009) Lung cancer A549 cells migrate directionally in DC electric fields with polarized and activated EGFRs. Bioelectromagnetics 30:29–35. doi:10.​1002/​Bem.​20436 CrossRef
    Zanet J, Stramer B, Millard T, Martin P, Payre F, Plaza S (2009) Fascin is required for blood cell migration during Drosophila embryogenesis. Development 136:2557–2565CrossRef
    Zhang J et al (2011) Electrically guiding migration of human induced pluripotent stem cells. Stem Cell Rev. doi:10.​1007/​s12015-011-9247-5
  • 作者单位:Kai-Yin Lo (1)
    Shang-Ying Wu (1)
    Yung-Shin Sun (2)

    1. Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan, ROC
    2. Department of Physics, Fu-Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 24205, Taiwan, ROC
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
Reactive oxygen species (ROS) are known to play an important role in the development of cancer, and many exogenous sources are believed to be related to the formation of ROS. For example, electric field is one of such factors reported to stimulate the production of ROS. Moreover, electric field is also shown to induce cell migration, a phenomenon termed electrotaxis. In this paper, a microfluidic chip was developed for studying the production of ROS and the migration in lung cancer cells under single or coexisting chemical/electrical stimulation. This chip has two unique features: (1) Five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 are achieved in the culture regions; (2) five different strengths of EFs are produced inside these culture areas. Lung cancer cells were seeded inside this biocompatible chip for investigating their response to different concentrations of H2O2, a chemical stimulus known to increase the production of ROS. Then, the effects of honokiol, a chemical stimulus, in combination with electric field, a physical stimulus, on lung cancer cells were examined. Finally, lung cancer cell migration was investigated under single or combined honokiol/electric field treatments. The current microfluidic chip provides an in vitro platform mimicking the physiological condition where cells are under circulating conditions and are subject to controllable chemical/physical stimuli.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700