Greenhouse Gas Emission and Balance of Marshes at the Southern North Sea Coast
详细信息    查看全文
  • 作者:Sarah Witte ; Luise Giani
  • 关键词:Methane ; Nitrous oxide ; Greenhouse gas balance ; Marshes ; Sulphate ; Coastal wetlands
  • 刊名:Wetlands
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:36
  • 期:1
  • 页码:121-132
  • 全文大小:811 KB
  • 参考文献:Adam P (1990) Saltmarsh ecology. Cambridge University Press, CambridgeCrossRef
    Baggs EM (2008) A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Communications in Mass Spectrometry 22:1664–1672CrossRef PubMed
    Barnes RO, Goldberg ED (1976) Methane production and consumption in anoxic marine sediments. Geology 4:297–300CrossRef
    Bartlett KB, Harriss RC (1993) Review and assessement of methane emissions from wetlands. Chemosphere 26:261–320CrossRef
    Bartlett KB, Bartlett DS, Harriss RC, Sebacher DI (1987) Methane emissions along a salt marsh salinity gradient. Biogeochemistry 4:183–202CrossRef
    Beetz S, Liebersbach H, Glatzel S, Jurasinski G, Buczko U, Höper H (2013) Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog. Biogeosciences 10:1067–1082CrossRef
    Blackwell MSA, Yamulki S, Bol R (2010) Nitrous oxide production and denitrification rates in estuarine intertidal saltmarsh and managed realignment zones. Estuarine, Coastal and Shelf Science 87:591–600CrossRef
    Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626CrossRef PubMed
    Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of north american wetlands. Wetlands 26:889–916CrossRef
    Brix H, Sorrell BK, Lorenzen B (2001) Are phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany 69:313–324CrossRef
    Chapman SJ (2010) Carbon sequestration in soils. In: Hester RE, Harrison RM (eds) Carbon capture: sequestration and storage. The Royal Society of Chemistry, Cambridge, pp 179–202
    Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles. doi:10.​1029/​2002GB001917
    Christensen T (1993) Methane emission from Arctic tundra. Biogeochemistry 21:117–139CrossRef
    Christensen TR, Ekberg A, Ström L, Mastepanov M, Panikov N, Öquist M, Svensson BH, Nykänen H, Martikainen PJ, Oskarsson H (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophysical Research Letters. doi:10.​1029/​2002GL016848
    Clevering OA, Brix H, Lukavská J (2001) Geographic variation in growth responses in Phragmites australis. Aquatic Botany 69:89–108CrossRef
    Couwenberg J, Thiele A, Tanneberger F, Augustin J, Bärisch S, Dubovik D, Liashchynskaya N, Michaelis D, Minke M, Skuratovich A, Joosten H (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89CrossRef
    Crill PM, Martens CS (1986) Methane production from bicarbonate and acetate in an anoxic marine sediment. Geochimica et Cosmochimica Acta 50:2089–2097CrossRef
    Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides: using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils. Bioscience 50:667–680CrossRef
    Dias ATC, Hoorens B, Logtestijn RSP, Vermaat JE, Aerts R (2010) Plant species composition can be used as a proxy to predict methane emissions in peatland ecosystems after land-use changes. Ecosystems 13:526–538CrossRef
    Ding W, Cai Z, Tsuruta H, Li X (2003) Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere 51:167–173CrossRef PubMed
    Giani L, Ahrensfeld E (2002) Pedobiochemical indicators for eutrophication and the development of “black spots” in tidal flat soils on the North Sea coast. Journal of Plant Nutrition and Soil Science 165:537–543CrossRef
    Giani L, Landt A (2000) Initiale Marschbodenentwicklung aus brackigen Sedimenten des Dollarts an der südwestlichen Nordseeküste. Journal of Plant Nutrition and Soil Science 163:549–553CrossRef
    Giani L, Dittrich K, Martsfeld-Hartmann A, Peters G (1996) Methanogenesis in saltmarsh soils of the North Sea coast of Germany. European Journal of Soil Science 47:175–182CrossRef
    Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805CrossRef PubMed
    Holland EA, Robertson GP, Greenberg J, Groffmann PM, Boone RD, Gosz JR (1999) Soil CO2, N2O and CH4 exchange. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard methods for long-term ecological research. Oxford University Press, Oxford, pp 185–201
    Hootsmans MJM, Wiegman F (1998) Four helophyte species growing under salt stress: their salt of life? Aquatic Botany 62:81–94CrossRef
    IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
    Iversen N, Jorgensen BB (1985) Anaerobic methane oxidation rates at the sulfate methane transition in marine sediments from Kattegat and Skagerrat. Limnology and Oceanography 30:944–955CrossRef
    Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytologist 164:423–439CrossRef
    Jungkunst HF, Fiedler S (2007) Latitudinal differentiated water table control of carbon dioxide, methane and nitrous oxide fluxes from hydromorphic soils: feedbacks to climate change. Global Change Biology 13:2668–2683CrossRef
    Jurasinski G, Koebsch F, Hagemann U, Guenther A (2013) Flux: flux rate calculation from dynamic closed chamber measurements. version 02.2, R-package, http://​cran.​r-project.​org/​web/​packages/​flux/​index.​html
    Keller J, Wolf A, Weisenhorn P, Drake B, Megonigal JP (2009) Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry 96:101–117CrossRef
    King GM, Wiebe WJ (1980) Regulation of sulfate concentrations and methanogenesis in salt marsh soils. Estuarine and Coastal Marine Science 10:215–223CrossRef
    Koch S, Jurasinski G, Koebsch F, Koch M, Glatzel S (2014) Spatial variability of annual estimates of methane emissions in a phragmites australis (Cav.) trin. ex steud. Dominated restored coastal brackish Fen. Wetlands. doi:10.​1007/​s13157-014-0528-z:​1–10
    Kuivila KM, Murray JW, Devol AH (1990) Methane production in the sulfate-depleted sediments of two marine basins. Geochimica et Cosmochimica Acta 54:403–411CrossRef
    Kutzbach L, Wagner D, Pfeiffer E-M (2004) Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 69:341–362CrossRef
    Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology 37:25–50CrossRef
    Livingston GP, Hutchinson GL (1995) Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson PA, Harris RC (eds) Biogenic trace gases: measuring emissions from soil and water. Blackwell Science, Oxford, pp 14–51
    Maljanen M, Sigurdsson BD, Guðmundsson J, Óskarsson H, Huttunen JT, Martikainen PJ (2010) Greenhouse gas balances of managed peatlands in the Nordic countries – present knowledge and gaps. Biogeosciences 7:2711–2738CrossRef
    Neubauer S, Megonigal JP (2015) Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems. doi:10.​1007/​s10021-015-9879-4:​1-14
    NLWKN (2015) https://​www.​pegelonline.​nlwkn.​niedersachsen.​de/​Karte access date: 11-16-2015
    Petersen J, Pott R, Dauck HP (2005) Ostfriesische Inseln: Landschaft und Vegetation im Wandel. Schlütersche, Hannover
    Poffenbarger H, Needelman B, Megonigal JP (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31:831–842CrossRef
    R Core Team (2014) R: a language and environment for statistical computing. version 3.0.3, http://​www.​R-project.​org/​
    Rejmankova E, Post RA (1996) Methane in sulfate-rich and sulfate-poor wetland sediments. Biogeochemistry 34:57–70CrossRef
    Robinson AD, Nedwell DB, Harrison RM, Ogilvie BG (1998) Hypernutrified estuaries as sources of N2O emission to the atmosphere: the estuary of the River Colne, Essex, UK. Marine Ecology Progress Series 164:59–71CrossRef
    Schlichting E, Blume H-P, Stahr K (1995) Bodenkundliches praktikum 2 edition. Blackwell Wiss.- Ver, Berlin
    Sehy U, Dyckmans J, Ruser R, Munch JC (2004) Adding dissolved organic carbon to simulate freez-thaw related N2O emissions from soils. Journal of Plant Nutrition and Soil Science 167:471–478CrossRef
    Smith KA, Thomson PE, Clayton H, McTaggart IP, Conen F (1998) Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmospheric Environment 32:3301–3309CrossRef
    Sparling G, Vojvodić-Vuković M, Schipper LA (1998) Hot-water-soluble C as a simple measure of labile soil organic matter: The relationship with microbial biomass C. Soil Biology and Biochemistry 30:1469–1472CrossRef
    van den Pol-van Dasselaar A, Oenema O (1999) Methane production and carbon mineralisation of size and density fractions of peat soils. Soil Biology and Biochemistry 31:877–886CrossRef
    Velthof GL, Jarvis SC, Stein A, Allen AG, Oenema O (1996) Spatial variability of nitrous oxide fluxes in mown and grazed grasslands on a poorly drained clay soil. Soil Biology and Biochemistry 28:1215–1225CrossRef
    Vleeshouwers LM, Verhagen A (2002) Carbon emission and sequestration by agricultural land use: a model study for Europe. Global Change Biology 8:519–530CrossRef
    Wagner D, Pfeiffer E-M (1997) Two optima of methane production in a typical soil of the Elbe river marshland. FEMS Microbiology Ecology 22:145–153CrossRef
    Wang Z, Zeng D, Patrick WH (1996) Methane emissions from natural wetlands. Environmental Monitoring and Assessment 42:143–161CrossRef PubMed
    Webster CP, Dowdell RJ (1982) Nitrous oxide emission from permanent grass swards. Journal of the Science of Food and Agriculture 33:227–230CrossRef
    Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environmental Engineering Science 22:73–94CrossRef
    Whiting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B 53:521–528CrossRef
  • 作者单位:Sarah Witte (1)
    Luise Giani (1)

    1. Institute for Biology and Environmental Science, University of Oldenburg, 26111, Oldenburg, Germany
  • 刊物主题:Freshwater & Marine Ecology; Environmental Management; Ecology; Hydrogeology; Coastal Sciences; Landscape Ecology;
  • 出版者:Springer Netherlands
  • ISSN:1943-6246
文摘
Environmental parameters controlling fluxes of greenhouse gases (GHG) differ spatially within landscapes. This study aimed to improve the understanding of landscape processes controlling GHG-fluxes of different landscape units of marshes (in terms of vegetation, land use and seawater inflow) at the Southern North Sea coast. For this emissions of methane (CH4) and nitrous oxide (N2O) were quantified and related to reported carbon sequestration rates. Ancillary environmental parameters were determined to identify controlling factors and thresholds enabling GHG emissions. For inland marshes (enclosed by embankments) the water level was the predominant factor controlling CH4 emissions ranging between 1.58 and 1544.70 kg CH4 ha−1 a−1. The duration of threshold (10 cm below surface) exceedance was found as a predictor for annual CH4 emissions. Emissions of outland marshes (influenced by tides) varying from −1.34 to 55.14 kg CH4 ha−1 a−1 were predominantly controlled by sulphate (\( \mathsf{S}{\mathsf{O}}_{\mathsf{4}}^{\mathsf{2}\hbox{-} } \)) concentrations, because soil CH4-contents were negligible when soil \( \mathsf{S}{\mathsf{O}}_{\mathsf{4}}^{\mathsf{2}\hbox{-} } \)-contents exceeded 0.5 mg g−1. The variability of the N2O-fluxes (−0.81 to 17.78 kg N2O ha−1 a−1) could not be explained by the collected environmental parameters. GHG balances indicated that inland extensive grasslands and particularly reed stands are net sources of CO2-equivalents (100 year time horizon), while outlands are natural sinks. Keywords Methane Nitrous oxide Greenhouse gas balance Marshes Sulphate Coastal wetlands

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700