Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization
详细信息    查看全文
  • 作者:Daniel P. Fitzgerald (1)
    Diane Palmieri (1)
    Emily Hua (1)
    Elizabeth Hargrave (1)
    Jeanne M. Herring (2)
    Yongzhen Qian (2)
    Eleazar Vega-Valle (2)
    Robert J. Weil (3)
    Andreas M. Stark (4)
    Alexander O. Vortmeyer (5)
    Patricia S. Steeg (1)
  • 关键词:Brain metastasis ; Brain pathology ; Breast cancer ; Neuroinflammation ; Reactive glia ; Xenograft
  • 刊名:Clinical & Experimental Metastasis
  • 出版年:2008
  • 出版时间:November 2008
  • 年:2008
  • 卷:25
  • 期:7
  • 页码:799-810
  • 全文大小:883KB
  • 参考文献:1. Weil RJ, Palmieri DC, Bronder JL et al (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167(4):913-20
    2. Palmieri D, Smith QR, Lockman PR et al (2006) Brain metastases of breast cancer. Breast Dis 26:139-47
    3. Palmieri D, Bronder JL, Herring JM et al (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67(9):4190-198. doi:10.1158/0008-5472.CAN-06-3316 CrossRef
    4. Santarelli JG, Sarkissian V, Hou LC et al (2007) Molecular events of brain metastasis. Neurosurg Focus 22(3):E1. doi:10.3171/foc.2007.22.3.2 CrossRef
    5. Cavaliere R, Schiff D (2007) Chemotherapy and cerebral metastases: Misperception or reality? Neurosurg Focus 22(3):E6. doi:10.3171/foc.2007.22.3.7 CrossRef
    6. Chang EL, Lo S (2003) Diagnosis and management of central nervous system metastases from breast cancer. Oncologist 8(5):398-10. doi:10.1634/theoncologist.8-5-398 CrossRef
    7. Neuwelt EA (2004) Mechanisms of disease: the blood-brain barrier. Neurosurgery 54(1):131-40. doi:10.1227/01.NEU.0000097715.11966.8E Discussion 41-2 CrossRef
    8. van den Bent MJ, Hegi ME, Stupp R (2006) Recent developments in the use of chemotherapy in brain tumours. Eur J Cancer 42(5):582-88. doi:10.1016/j.ejca.2005.06.031 CrossRef
    9. Drappatz J, Wen PY (2006) Chemotherapy and targeted molecular therapies for brain metastases. Expert Rev Neurother 6(10):1465-479. doi:10.1586/14737175.6.10.1465 CrossRef
    10. Chen EI, Hewel J, Krueger JS et al (2007) Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67(4):1472-486. doi:10.1158/0008-5472.CAN-06-3137 CrossRef
    11. Fidler IJ, Schackert G, Zhang RD et al (1999) The biology of melanoma brain metastasis. Cancer Metastasis Rev 18(3):387-00. doi:10.1023/A:1006329410433 CrossRef
    12. Kim LS, Huang S, Lu W et al (2004) Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis 21(2):107-18. doi:10.1023/B:CLIN.0000024761.00373.55 CrossRef
    13. Kusters B, Leenders WP, Wesseling P et al (2002) Vascular endothelial growth factor-a(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res 62(2):341-45
    14. Lu W, Bucana CD, Schroit AJ (2007) Pathogenesis and vascular integrity of breast cancer brain metastasis. Int J Cancer 120(5):1023-026. doi:10.1002/ijc.22388 CrossRef
    15. Saito N, Hatori T, Murata N et al (2007) A double three-step theory of brain metastasis in mice: The role of the pia mater and matrix metalloproteinases. Neuropathol Appl Neurobiol 33(3):288-98. doi:10.1111/j.1365-2990.2007.00799.x CrossRef
    16. Schackert G, Price JE, Zhang RD et al (1990) Regional growth of different human melanomas as metastases in the brain of nude mice. Am J Pathol 136(1):95-02
    17. Yoneda T, Williams PJ, Hiraga T et al (2001) A bone-seeking clone exhibits different biological properties from the mda-mb-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16(8):1486-495. doi:10.1359/jbmr.2001.16.8.1486 CrossRef
    18. Mendes O, Kim HT, Stoica G (2005) Expression of mmp2, mmp9 and mmp3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis 22(3):237-46. doi:10.1007/s10585-005-8115-6 CrossRef
    19. Rye PD, Norum L, Olsen DR et al (1996) Brain metastasis model in athymic nude mice using a novel muc1-secreting human breast-cancer cell line, ma11. Int J Cancer 68(5):682-87. doi :10.1002/(SICI)1097-0215(19961127)68:5<682::AID-IJC20>3.0.CO;2-2 CrossRef
    20. Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L et al (in press) Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. Journal of the National Cancer Institute
    21. Paget S (1889) Distribution of secondary growths in cancer of the breast. Lancet 1:571-73. doi:10.1016/S0140-6736(00)49915-0 CrossRef
    22. Bhowmick NA, Moses HL (2005) Tumor-stroma interactions. Curr Opin Genet Dev 15(1):97-01. doi:10.1016/j.gde.2004.12.003 CrossRef
    23. De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200(4):429-47. doi:10.1002/path.1398 CrossRef
    24. Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99(21):1583-593. doi:10.1093/jnci/djm187 CrossRef
    25. Li H, Fan X, Houghton J (2007) Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 101(4):805-15. doi:10.1002/jcb.21159 CrossRef
    26. Schedin P, O’Brien J, Rudolph M et al (2007) Microenvironment of the involuting mammary gland mediates mammary cancer progression. J Mammary Gland Biol Neoplasia 12(1):71-2. doi:10.1007/s10911-007-9039-3 CrossRef
    27. Anderson KC (2007) Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions. Exp Hematol 35(4 Suppl 1):155-62. doi:10.1016/j.exphem.2007.01.024 CrossRef
    28. Hideshima T, Mitsiades C, Tonon G et al (2007) Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7(8):585-98. doi:10.1038/nrc2189 CrossRef
    29. Novak U, Kaye AH (2000) Extracellular matrix and the brain: components and function. J Clin Neurosci 7(4):280-90. doi:10.1054/jocn.1999.0212 CrossRef
    30. Rauch U (2004) Extracellular matrix components associated with remodeling processes in brain. Cell Mol Life Sci 61(16):2031-045. doi:10.1007/s00018-004-4043-x CrossRef
    31. de Vries NA, Beijnen JH, Boogerd W et al (2006) Blood-brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurother 6(8):1199-209. doi:10.1586/14737175.6.8.1199 CrossRef
    32. Engelhardt B (2006) Molecular mechanisms involved in t cell migration across the blood-brain barrier. J Neural Transm 113(4):477-85. doi:10.1007/s00702-005-0409-y CrossRef
    33. Streit WJ, Conde JR, Fendrick SE et al (2005) Role of microglia in the central nervous system’s immune response. Neurol Res 27(7):685-91
    34. Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11(5):400-07. doi:10.1177/1073858405278321 CrossRef
    35. Kobori N, Clifton GL, Dash P (2002) Altered expression of novel genes in the cerebral cortex following experimental brain injury. Brain Res Mol Brain Res 104(2):148-58. doi:10.1016/S0169-328X(02)00331-5 CrossRef
    36. Long Y, Zou L, Liu H et al (2003) Altered expression of randomly selected genes in mouse hippocampus after traumatic brain injury. J Neurosci Res 71(5):710-20. doi:10.1002/jnr.10524 CrossRef
    37. Matzilevich DA, Rall JM, Moore AN et al (2002) High-density microarray analysis of hippocampal gene expression following experimental brain injury. J Neurosci Res 67(5):646-63. doi:10.1002/jnr.10157 CrossRef
    38. Natale JE, Ahmed F, Cernak I et al (2003) Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. J Neurotrauma 20(10):907-27. doi:10.1089/089771503770195777 CrossRef
    39. Raghavendra Rao VL, Dhodda VK, Song G et al (2003) Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by genechip analysis. J Neurosci Res 71(2):208-19. doi:10.1002/jnr.10486 CrossRef
    40. Sun L, Lee J, Fine HA (2004) Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Invest 113(9):1364-374
    41. Bezzi P, Volterra A (2001) A neuron-glia signalling network in the active brain. Curr Opin Neurobiol 11(3):387-94. doi:10.1016/S0959-4388(00)00223-3 CrossRef
    42. Giaume C, Kirchhoff F, Matute C et al (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14(7):1324-335. doi:10.1038/sj.cdd.4402144 CrossRef
    43. Heyn C, Ronald JA, Ramadan SS et al (2006) In vivo mri of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56(5):1001-010. doi:10.1002/mrm.21029 CrossRef
    44. Zhang RD, Fidler IJ, Price JE (1991) Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. Invasion Metastasis 11(4):204-15
    45. Delattre JY, Krol G, Thaler HT et al (1988) Distribution of brain metastases. Arch Neurol 45(7):741-44
    46. Hwang TL, Close TP, Grego JM et al (1996) Predilection of brain metastasis in gray and white matter junction and vascular border zones. Cancer 77(8):1551-555. doi :10.1002/(SICI)1097-0142(19960415)77:8<1551::AID-CNCR19>3.0.CO;2-Z CrossRef
    47. Busch SA, Silver J (2007) The role of extracellular matrix in cns regeneration. Curr Opin Neurobiol 17(1):120-27. doi:10.1016/j.conb.2006.09.004 CrossRef
    48. Ajtai BM, Kalman M (2001) Reactive glia support and guide axon growth in the rat thalamus during the first postnatal week. A sharply timed transition from permissive to non-permissive stage. Int J Dev Neurosci 19(6):589-97. doi:10.1016/S0736-5748(01)00038-7 CrossRef
    49. Colodner KJ, Montana RA, Anthony DC et al (2005) Proliferative potential of human astrocytes. J Neuropathol Exp Neurol 64(2):163-69
    50. Graeber MB, Scheithauer BW, Kreutzberg GW (2002) Microglia in brain tumors. Glia 40(2):252-59. doi:10.1002/glia.10147 CrossRef
    51. Nuttall RK, Silva C, Hader W et al (2007) Metalloproteinases are enriched in microglia compared with leukocytes and they regulate cytokine levels in activated microglia. Glia 55(5):516-26. doi:10.1002/glia.20478 CrossRef
    52. Nishizuka I, Ishikawa T, Hamaguchi Y et al (2002) Analysis of gene expression involved in brain metastasis from breast cancer using cdna microarray. Breast Cancer (Tokyo, Japan) 9(1):26-2
  • 作者单位:Daniel P. Fitzgerald (1)
    Diane Palmieri (1)
    Emily Hua (1)
    Elizabeth Hargrave (1)
    Jeanne M. Herring (2)
    Yongzhen Qian (2)
    Eleazar Vega-Valle (2)
    Robert J. Weil (3)
    Andreas M. Stark (4)
    Alexander O. Vortmeyer (5)
    Patricia S. Steeg (1)

    1. Women’s Cancers Section, Laboratory of Molecular Pharmacology, National Cancer Institute, Building 37, Room 1126, National Institutes of Health, Bethesda, MD, 20892, USA
    2. Laboratory Animal Sciences Program, Science Applications International Corporation-Frederick, National Cancer Institute NIH, Frederick, MD, USA
    3. Department of Neurosurgery and Neurological Institute, Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
    4. Department of Neurosurgery, Schleswig-Holstein University Medical Center, Campus Kiel, Germany
    5. Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke NIH, Bethesda, MD, USA
  • ISSN:1573-7276
文摘
Interactions between tumor cells and the microenvironment are crucial to tumor formation and metastasis. The central nervous system serves as a “sanctuary-site for metastasis, resulting in poor prognosis in diagnosed patients. The incidence of brain metastasis is increasing; however, little is known about interactions between the brain and metastatic cells. Brain pathology was examined in an experimental model system of brain metastasis, using a subline of MDA-MB-231 human breast cancer cells. The results were compared with an analysis of sixteen resected human brain metastases of breast cancer. Experimental metastases formed preferentially in specific brain regions, with a distribution similar to clinical cases. In both the 231-BR model, and in human specimens, Ki67 expression indicated that metastases were highly proliferative (~50%). Little apoptosis was observed in either set of tumors. In the model system, metastases elicited a brain inflammatory response, with extensive reactive gliosis surrounding metastases. Similarly, large numbers of glial cells were found within the inner tumor mass of human brain metastases. In vitro co-cultures demonstrated that glia induced a ~5-fold increase in metastatic cell proliferation (P?<?0.001), suggesting that brain tissue secretes factors conducive to tumor cell growth. Molecules used to signal between tumor cells and the surrounding glia could provide a new avenue of therapeutic targets for brain metastases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700