Cloning, Overexpression, and Characterization of Halostable, Solvent-Tolerant Novel β-Endoglucanase from a Marine Bacterium Photobacterium panuliri LBS5T (DSM 27646T
详细信息    查看全文
  • 作者:Kamal Deep ; Abhijit Poddar ; Subrata K. Das
  • 关键词:Photobacterium panuliri LBS5T ; β ; endoglucanase ; Halostable ; Solvent tolerant ; Cloning ; Overexpression
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:178
  • 期:4
  • 页码:695-709
  • 全文大小:1,655 KB
  • 参考文献:1.Zhang, X. Z., & Zhang, Y. H. P. (2013). Cellulases: characteristics, sources, production, and applications. In S. T. Yang, H. A. El-Enshasy, & N. Thongchul (Eds.), Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Hoboken: John Wiley & Sons, Inc.
    2.Azevedo, H., Bishop, D., & Cavaco-Paulo, A. (2000). Effects of agitation level on the adsorption, desorption, and activities on cotton fabrics of full length and core domains of EGV (Humicola insolens) and CenA (Cellulomonas fimi). Enzyme and Microbial Technology, 27, 325–329.CrossRef
    3.Murashimaa, K., Nishimuraa, T., Nakamuraa, Y., Kogaa, J., Moriyab, T., Sumidab, N., et al. (2002). Purification and characterization of new endo-1,4-β-D-glucanases from Rhizopus oryzae. Enzyme and Microbial Technology, 30, 319–326.CrossRef
    4.Maki, M., Leung, K. T., & Qin, W. (2009). The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. International Journal of Biological Sciences, 5, 500–516.CrossRef
    5.Gomez, J., & Steiner, W. (2004). The biocatalytic potential of extremophiles and extremozymes. Food Technology and Biotechnology, 2, 223–235.
    6.Marhuenda-Egea, F. C., & Bonete, M. J. (2002). Extreme halophilic enzymes in organic solvents. Current Opinion in Biotechnology, 13, 385–389.CrossRef
    7.Wang, C. Y., Hsieh, Y. R., Ng, C. C., Chan, H., Lin, H. T., Tzeng, W. S., & Shyu, Y. T. (2009). Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05. Enzyme and Microbial Technology, 44, 373–379.CrossRef
    8.Simankova, M. V., Chernych, N. A., Osipov, G. A., & Zavarzin, G. A. (1993). Halocella cellulolytica gen. nov., sp. nov., a new obligately anaerobic, halophilic, cellulolytic bacterium. Systematic and Applied Microbiology, 16, 385–389.CrossRef
    9.Huang, X., Shao, Z., Hong, Y., Lin, L., Li, C., Huang, F., Wang, H., & Liu, Z. (2010). Cel8H, a novel endoglucanase from the halophilic bacterium Halomonas sp. S66-4: molecular cloning, heterogonous expression, and biochemical characterization. Journal of Microbiology, 48, 318–324.CrossRef
    10.Hirasawa, K., Uchimura, K., Kashiwa, M., Grant, W. D., Ito, S., Kobayashi, T., & Horikoshi, K. (2006). Salt-activated endoglucanase of a strain of alkaliphilic Bacillus agaradhaerens. Antonie van Leeuwenhoek, 89, 211–219.CrossRef
    11.Aygan, A., & Arikan, B. (2008). A new halo-alkaliphilic, thermostable endoglucanase from moderately halophilic Bacillus sp. C14 isolated from Van Soda Lake. International Journal of Agriculture and Biology, 10, 369–374.
    12.Li, X., Wang, H. L., Li, T., & Yu, H. Y. (2012). Purification and characterization of an organic solvent-tolerant alkaline cellulase from a halophilic isolate of Thalassobacillus. Biotechnology Letters, 34, 1531–1536.CrossRef
    13.Deep, K., Poddar, A., & Das, S. K. (2014). Photobacterium panuliri sp. nov., an alkalitolerant marine bacterium isolated from eggs of spiny lobster, Panulirus penicillatus from Andaman Sea. Current Microbiology, 69, 660–668.CrossRef
    14.Tabor, S. (1990). Expression using the T7 RNA polymerase/promoter system. In F. A. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, & K. Struhl (Eds.), Current protocols in molecular biology (pp. 16.2.1–16.2.11). NY: Greene Publishing and Wiley-Interscience.
    15.Boyd, J., Oza, M. N., & Murphy, J. R. (1990). Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae. Proceedings of the National Academy of Sciences of the United States of America, 87, 5968–5972.CrossRef
    16.Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.CrossRef
    17.Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRef
    18.Bernfeld, P. (1955). Amylases α and β. Method Enzymol, 1, 149–158.CrossRef
    19.Li, X., & Yu, H. Y. (2012). Purification and characterization of an organic-solvent-tolerant cellulase from a halotolerant isolate, Bacillus sp. L1. Journal of Industrial Microbiology and Biotechnology, 39, 1117–1124.CrossRef
    20.Bailey, T. L., Bodén, M., Buske, F. A., Frith, M., Grant, C. E., et al. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 37, W202–W208.CrossRef
    21.Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 10, 2731–2739.CrossRef
    22.Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–42526.
    23.Ciria, R., Abreu-Goodger, C., Morett, E., & Merino, E. (2004). GeConT: gene context analysis. Bioinformatics, 14, 2307–2308.CrossRef
    24.Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modelling, prediction and analysis. Nature Protocols, 10, 845–858.CrossRef
    25.Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24, 417–422.CrossRef
    26.Roy, A., Yang, J., & Zhang, Y. (2012). COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Research, 40, W471–W477.CrossRef
    27.Wiedemann, C., Bellstedt, P., & Görlach, M. (2013). CAPITO—a web server based analysis and plotting tool for circular dichroism data. Bioinformatics, 29, 1750–1757.CrossRef
    28.Bohm, G., Muhr, R., & Jaenicke, R. (1992). CDNN: quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Engineering, 5, 191–195.CrossRef
    29.Baneyx, F. (1999). Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology, 10, 411–421.CrossRef
    30.Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66, 10–26.CrossRef
    31.Park, J. I., Steen, E. J., Burd, H., Evans, S. S., Redding-Johnson, A. M., Batth, T., et al. (2012). A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS ONE, 7, e37010.CrossRef
    32.Zhang, T., Datta, S., Eichler, J., Ivanova, N., Axen, S. D., et al. (2011). Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance. Green Chemistry, 13, 2083–2090.CrossRef
    33.Trincone, A. (2011). Marine biocatalysts: enzymatic features and applications. Marine Drugs, 9, 478–499.CrossRef
    34.Zhang, G., Li, S., Xue, Y., Mao, L., & Ma, Y. (2012). Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles, 16, 35–43.CrossRef
    35.Gaur Voget, S., Steele, H. L., & Streit, W. R. (2006). Characterization of a metagenome-derived halotolerant cellulase. Journal of Biotechnology, 126, 26–36.CrossRef
    36.Doukyu, N., & Ogino, H. (2010). Organic solvent-tolerant enzymes. Biochemical Engineering Journal, 48, 270–282.CrossRef
    37.Gaur, R., & Tiwari, S. (2015). Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnology, 15, 19.CrossRef
    38.Trivedi, N., Gupta, V., Kumar, M., Kumari, P., Reddy, C. R., & Jha, B. (2011). Solvent tolerant marine bacterium Bacillus aquimaris secreting organic solvent stable alkaline cellulase. Chemosphere, 83, 706–712.CrossRef
    39.Hu, Y., Zhang, G. M., Li, A. Y., Chen, J., & L. X., M. (2008). Cloning and enzymatic characterization of a xylanase gene from a soil derived metagenomic library with an efficient approach. Applied Microbiology and Biotechnology, 80, 823–830.CrossRef
    40.Singh, J., Batra, N., & Sobti, R. C. (2004). Purification and characterization of alkaline cellulase produced by a novel isolate, Bacillus sphaericus JS1. Journal of Industrial Microbiology and Biotechnology, 31, 51–56.CrossRef
    41.Coolbear, T., Whittaker, J. M., & Daniel, R. M. (1992). The effect of metal ions on the activity and thermostability of the extracellular proteinase from a thermophilic Bacillus, strain EA.1. Biochemical Journal , 287, 367–374.CrossRef
    42.Sierecka, J. K. (1989). Purification and partial characterization of a neutral protease from a virulent strain of Bacillus cereus. The International Journal of Biochemistry & Cell Biology , 30, 579–595.CrossRef
    43.Yang, J., Roy, A., & Zhang, Y. (2013). BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Research, 41, D1096–D1103.CrossRef
    44.Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular dichroism. Biochimica et Biophysica Acta, 1751, 119–139.CrossRef
  • 作者单位:Kamal Deep (1)
    Abhijit Poddar (1)
    Subrata K. Das (1)

    1. Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751 023, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
A 1329 nucleotide long endoglucanase gene was amplified from marine bacterium Photobacterium panuliri strain LBS5T.The enzyme sequence was novel as protein-based similarity search revealed that it shared maximum similarity of 99 % with hypothetical protein of P. aquae and 40 % with endoglucanase of P. marinum AK15. The gene was cloned, overexpressed in Escherichia coli BL21 (DE3), and purified up to homogeneity using Ni-NTA affinity chromatography. The purified enzyme, designated as Cel8, was monomeric and has a molecular mass of 53 kDa. The enzyme was halostable and exhibited optimal carboxymethyl cellulase (CMCase) activity and stability at 2 M NaCl. Optimal activity was obtained at 40 °C and at pH 4. The enzyme exhibited remarkable stability in different organic solvents (50 %, v/v), and activity increased nearly 1.5-fold in presence of butanol, isopropanol, petroleum ether, benzene, acetone, and n-hexane. It was active in Ca2+, Ba2+, and Ni2+ and inhibited by Co2+, Cd2+, Zn2+, Cu2+, and Hg2+. Under normal physiological conditions, the enzyme has 25 % helix, 30 % sheets, and 56 % irregularities, whereas salt leads to helix to sheet transition in enzyme. Three-dimensional reconstruction analysis revealed that the enzyme has (α/β)8 structure and a TIM barrel fold-like structure at the central groove of enzyme. This is the first evidenced report on halostable, organic solvent tolerant cellulase in the marine bacterial genus Photobacterium.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700