Amino acid transporter expansions associated with the evolution of obligate endosymbiosis in sap-feeding insects (Hemiptera: sternorrhyncha)
详细信息    查看全文
  • 作者:Romain A Dahan (1) (2)
    Rebecca P Duncan (3)
    Alex CC Wilson (3)
    Liliana M D谩valos (1) (4)

    1. Department of Ecology and Evolution
    ; State University of New York at Stony Brook ; Stony Brook ; NY ; 11794 ; USA
    2. Department of Biology
    ; University of Rochester ; Rochester ; NY ; 14627 ; USA
    3. Department of Biology
    ; University of Miami ; Coral Gables ; FL ; 33146 ; USA
    4. Consortium for Inter-Disciplinary Environmental Research (CIDER)
    ; State University of New York at Stony Brook ; Stony Brook ; NY ; 11794 ; USA
  • 关键词:Gene family evolution ; Endosymbiosis ; Gene duplication ; Phylogenetics
  • 刊名:BMC Evolutionary Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:15
  • 期:1
  • 全文大小:559 KB
  • 参考文献:1. Grimaldi, D, Engel, MS (2005) Evolution of the Insects. Cambridge University Press, New York
    2. Moran, NA, Tran, P, Gerardo, NM (2005) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum bacteroidetes symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum bacteroidetes. Appl Environ Microbiol 71: pp. 8802 CrossRef
    3. Dohlen, CD, Moran, NA (1995) Phylogeny of the homoptera: a paraphyletic taxon. J Mol Evol 41: pp. 211-223 CrossRef
    4. Baumann, P (2005) Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59: pp. 155-189 CrossRef
    5. Dasch, GA, Weiss, E, Chang, KP (1984) Endosymbionts of insects. Bergey鈥檚 man syst bacteriol. Williams & Wilkins, Baltimore, pp. 811-833
    6. Beard, CB, Dotson, EM, Pennington, PM, Eichler, S, Cordon-Rosales, C, Durvasula, RV (2001) Bacterial symbiosis and paratransgenic control of vector-borne Chagas disease. Int J Parasitol 31: pp. 621-627 CrossRef
    7. Kirkness, EF, Haas, BJ, Sun, W, Braig, HR, Perotti, MA, Clark, JM (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci U S A 107: pp. 12168-12173 CrossRef
    8. Price, DRG, Duncan, RP, Shigenobu, S, Wilson, ACC (2011) Genome expansion and differential expression of amino acid transporters at the aphid/Buchnera symbiotic interface. Mol Biol Evol 28: pp. 3113-3126 CrossRef
    9. Husnik, F, Nikoh, N, Koga, R, Ross, L, Duncan, RP, Fujie, M (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153: pp. 1567-1578 CrossRef
    10. Duncan, RP, Husnik, F, Leuven, JT, Gilbert, DG, D谩valos, LM, McCutcheon, JP (2014) Dynamic recruitment of amino acid transporters to the insect/symbiont interface. Mol Ecol 23: pp. 1608-1623 CrossRef
    11. Sloan, DB, Nakabachi, A, Richards, S, Qu, J, Murali, SC, Gibbs, RA (2014) Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol Biol Evol 31: pp. 857-871 CrossRef
    12. Wilson, ACC, Ashton, PD, Calevro, F, Charles, H, Colella, S, Febvay, G (2010) Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect Mol Biol 19: pp. 249-258 CrossRef
    13. Hansen, AK, Moran, NA (2011) Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proc Natl Acad Sci U S A 108: pp. 2849-2854 CrossRef
    14. Russell, CW, Bouvaine, S, Newell, PD, Douglas, AE (2013) Shared metabolic pathways in a coevolved insect-bacterial symbiosis. Appl Environ Microbiol 79: pp. 6117-6123 CrossRef
    15. Misof, B, Liu, S, Meusemann, K, Peters, RS, Donath, A, Mayer, C (2014) Phylogenomics resolves the timing and pattern of insect evolution. Sci 346: pp. 763-768 CrossRef
    16. Doyon, J-P, Ranwez, V, Daubin, V, Berry, V (2011) Models, algorithms and programs for phylogeny reconciliation. Brief Bioinform 12: pp. 392-400 CrossRef
    17. Charleston, MA (1998) Jungles: a new solution to the host/parasite phylogeny reconciliation problem. Math Biosci 149: pp. 191-223 CrossRef
    18. Durand, D, Halld贸rsson, BV, Vernot, B (2006) A hybrid micro-macroevolutionary approach to gene tree reconstruction. J Comput Biol 13: pp. 320-335 CrossRef
    19. Vernot, B, Stolzer, M, Goldman, A, Durand, D (2008) Reconciliation with non-binary species trees. J Comput Biol 15: pp. 981-1006 CrossRef
    20. Hahn, MW (2007) Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Genome Biol 8: pp. R141 CrossRef
    21. Liu, L, Yu, L, Kalavacharla, V, Liu, Z (2011) A Bayesian model for gene family evolution. BMC Bioinformatics 12: pp. 426 CrossRef
    22. Ames, RM, Money, D, Ghatge, VP, Whelan, S, Lovell, SC (2012) Determining the evolutionary history of gene families. Bioinformatics 28: pp. 48-55 CrossRef
    23. Librado, P, Vieira, FG, Rozas, J (2012) BadiRate: estimating family turnover rates by likelihood-based methods. Bioinformatics 28: pp. 279-281 CrossRef
    24. Han, MV, Thomas, GWC, Lugo-Martinez, J, Hahn, MW (2013) Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol 30: pp. 1987-1997 CrossRef
    25. Bie, T, Cristianini, N, Demuth, JP, Hahn, MW (2006) CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22: pp. 1269-1271 CrossRef
    26. Hahn, MW, Bie, T, Stajich, JE, Nguyen, C, Cristianini, N (2005) Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Res 15: pp. 1153-1160 CrossRef
    27. Sj枚strand, J, Arvestad, L, Lagergren, J, Sennblad, B (2013) GenPhyloData: realistic simulation of gene family evolution. BMC Bioinformatics 14: pp. 209 CrossRef
    28. Ishiwata, K, Sasaki, G, Ogawa, J, Miyata, T, Su, ZH (2010) Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Mol Phylogenet Evol 58: pp. 169-180 CrossRef
    29. Goldman, N, Yang, Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11: pp. 725-736
    30. Kim, H, Lee, S, Jang, Y (2011) Macroevolutionary patterns in the Aphidini aphids (Hemiptera: Aphididae): diversification, host association, and biogeographic origins. PLoS One 6: pp. e24749 CrossRef
    Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8: pp. e1000313 CrossRef
    31. Trautwein, MD, Wiegmann, BM, Beutel, R, Kjer, KM, Yeates, DK (2012) Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol 57: pp. 449-468 CrossRef
    32. Goldman, N, Anderson, JP, Rodrigo, AG (2000) Likelihood-based tests of topologies in phylogenetics. Syst Biol 49: pp. 652-670 CrossRef
    33. Shimodaira, H, Hasegawa, M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16: pp. 1114-1116 CrossRef
    34. Lynch, M, Conery, JS (2000) The evolutionary fate and consequences of duplicate genes. Sci 290: pp. 1151-1155 CrossRef
    35. Price, DRG, Feng, H, Baker, JD, Bavan, S, Luetje, CW, Wilson, ACC (2014) Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts. Proc Natl Acad Sci U S A 111: pp. 320-325 CrossRef
    36. Shigenobu, S, Watanabe, H, Hattori, M, Sakaki, Y, Ishikawa, H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS Nat 407: pp. 81-86
    37. McCutcheon, JP, Dohlen, CD (2011) An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol 21: pp. 1366-1372 CrossRef
    38. Song, N, Liang, A-P, Bu, C-P (2012) A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences. PLoS One 7: pp. e48778 CrossRef
    39. Cui, Y, Xie, Q, Hua, J, Dang, K, Zhou, J, Liu, X (2013) Phylogenomics of hemiptera (insecta: paraneoptera) based on mitochondrial genomes. Syst Entomol 38: pp. 233-245 CrossRef
    40. Waterhouse, RM, Tegenfeldt, F, Li, J, Zdobnov, EM, Kriventseva, EV (2013) OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res 41: pp. D358-D365 CrossRef
    41. Munoz-Torres, MC, Reese, JT, Childers, CP, Bennett, AK, Sundaram, JP, Childs, KL (2011) Hymenoptera genome database: integrated community resources for insect species of the order Hymenoptera. Nucleic Acids Res 39: pp. D658-D662 CrossRef
    Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics 15: pp. 86 CrossRef
    42. Ribeiro, JMC, Genta, FA, Sorgine, MHF, Logullo, R, Mesquita, RD, Paiva-Silva, GO (2014) An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis 8: pp. e2594 CrossRef
    43. Nachappa, P, Levy, J, Tamborindeguy, C (2012) Transcriptome analyses of Bactericera cockerelli adults in response to 鈥淐andidatus Liberibacter solanacearum鈥?infection. Mol Genet Genomics 287: pp. 803-817 CrossRef
    44. Altschul, SF, Madden, TL, Sch盲ffer, AA, Zhang, J, Zhang, Z, Miller, W (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: pp. 3389-3402 CrossRef
    45. Katoh, K, Standley, DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: pp. 772-780 CrossRef
    46. Lanfear, R, Calcott, B, Ho, SYW, Guindon, S (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29: pp. 1695-1701 CrossRef
    47. Stamatakis, A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: pp. 2688-2690 CrossRef
    48. Paradis, E, Claude, J, Strimmer, K (2004) APE: analyses of phylogenetics and evolution in r language. Bioinformatics 20: pp. 289-290 CrossRef
    49. Drummond, AJ, Suchard, MA, Xie, D, Rambaut, A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: pp. 1969-1973 CrossRef
    50. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proc gatew comput environ work. New Orleans, LA; 2010:1鈥?.
    51. R Developmental Core Team. R: a language and environment for statistical computing. In: R Foundation for Statistical Computing. http://www.R-project.org (2008).
    52. Le, SQ, Gascuel, O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25: pp. 1307-1320 CrossRef
    53. Jones, DT, Taylor, WR, Thornton, JM (1991) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8: pp. 275-282
    54. M眉ller, T, Vingron, M (2000) Modeling amino acid replacement. J Comput Biol 7: pp. 761-776 CrossRef
  • 刊物主题:Evolutionary Biology; Animal Systematics/Taxonomy/Biogeography; Entomology; Genetics and Population Dynamics; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2148
文摘
Background Mutualistic obligate endosymbioses shape the evolution of endosymbiont genomes, but their impact on host genomes remains unclear. Insects of the sub-order Sternorrhyncha (Hemiptera) depend on bacterial endosymbionts for essential amino acids present at low abundances in their phloem-based diet. This obligate dependency has been proposed to explain why multiple amino acid transporter genes are maintained in the genomes of the insect hosts. We implemented phylogenetic comparative methods to test whether amino acid transporters have proliferated in sternorrhynchan genomes at rates grater than expected by chance. Results By applying a series of methods to reconcile gene and species trees, inferring the size of gene families in ancestral lineages, and simulating the null process of birth and death in multi-gene families, we uncovered a 10-fold increase in duplication rate in the AAAP family of amino acid transporters within Sternorrhyncha. This gene family expansion was unmatched in other closely related clades lacking endosymbionts that provide essential amino acids. Conclusions Our findings support the influence of obligate endosymbioses on host genome evolution by both inferring significant expansions of gene families involved in symbiotic interactions, and discovering increases in the rate of duplication associated with multiple emergences of obligate symbiosis in Sternorrhyncha.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700