Diversity of transcripts and transcript processing forms in plastids of the dinoflagellate alga Karenia mikimotoi
详细信息    查看全文
  • 作者:Richard G. Dorrell ; George A. Hinksman ; Christopher J. Howe
  • 关键词:RNA processing ; Haptophytes ; Transcript processing ; Endosymbiotic gene transfer ; Chloroplast evolution
  • 刊名:Plant Molecular Biology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:90
  • 期:3
  • 页码:233-247
  • 全文大小:754 KB
  • 参考文献:Bahl A, Davis PH, Behnke M, Dzierszinski F, Jagalur M, Chen F, Shanmugam D, White MW, Kulp D, Roos DS (2010) A novel multifunctional oligonucleotide microarray for Toxoplasma gondii. BMC Genom 11:18CrossRef
    Barbrook AC, Dorrell RG, Burrows J, Plenderleith LJ, Nisbet RER, Howe CJ (2012) Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae. Plant Mol Biol 79:347–357PubMed CrossRef
    Baurain D, Brinkmann H, Petersen J, Rodriguez-Ezpeleta N, Stechmann A, Demoulin V, Roger AJ, Burger G, Lang BF, Philippe H (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709PubMed CrossRef
    Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795PubMed CrossRef
    Burki F, Imanian B, Hehenberger E, Hirakawa Y, Maruyama S, Keeling PJ (2014) Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates. Eukaryot Cell 13:246–255PubMed PubMedCentral CrossRef
    Cuvelier ML, Allen AE, Monier A, McCrow JP, Messie M, Tringe SG, Woyke T, Welsh RM, Ishoey T, Lee JH, Binder BJ, DuPont CL, Latasa M, Guigand C, Buck KR, Hilton J, Thiagarajan M, Caler E, Read B, Lasken RS, Chavez FP, Worden AZ (2010) Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. Proc Natl Acad Sci USA 107:14679–14684PubMed PubMedCentral CrossRef
    Dang Y, Green BR (2009) Substitutional editing of Heterocapsa triquetra chloroplast transcripts and a folding model for its divergent chloroplast 16S rRNA. Gene 442:73–80PubMed CrossRef
    Dang Y, Green BR (2010) Long transcripts from dinoflagellate chloroplast minicircles suggest “rolling circle” transcription. J Biol Chem 285:5196–5203PubMed PubMedCentral CrossRef
    Dorrell RG, Howe CJ (2012) Functional remodeling of RNA processing in replacement chloroplasts by pathways retained from their predecessors. Proc Natl Acad Sci USA 109:18879–18884PubMed PubMedCentral CrossRef
    Dorrell RG, Howe CJ (2015) Integration of plastids with their hosts: lessons learnt from dinoflagellates. Proc Natl Acad Sci USA 112:10247–10254PubMed PubMedCentral CrossRef
    Dorrell RG, Drew J, Nisbet RE, Howe CJ (2014) Evolution of chloroplast transcript processing in Plasmodium and its chromerid algal relatives. PLoS Genet 10:1004008CrossRef
    Gabrielsen TM, Minge MA, Espelund M, Tooming-Klunderud A, Patil V, Nederbragt AJ, Otis C, Turmel M, Shalchian-Tabrizi K, Lemieux C, Jakobsen KS (2011) Genome evolution of a tertiary dinoflagellate plastid. PLoS One 6:19132CrossRef
    Georg J, Honsel A, Voss B, Rennenberg H, Hess WR (2010) A long antisense RNA in plant chloroplasts. New Phytol 186:615–622PubMed CrossRef
    Green BR (2011) Chloroplast genomes of photosynthetic eukaryotes. Plant J 66:34–44PubMed CrossRef
    Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T (2015) Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J 81:519–528PubMed PubMedCentral CrossRef
    Guo W, Grewe F, Mower JP (2015) Variable frequency of plastid RNA editing among ferns and repeated loss of uridine-to-cytidine editing from vascular plants. PLoS One 10:0117075
    Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512PubMed CrossRef
    Hotto AM, Huston ZE, Stern DB (2010) Overexpression of a natural chloroplast-encoded antisense RNA in tobacco destabilizes 5S rRNA and retards plant growth. BMC Plant Biol 10:213PubMed PubMedCentral CrossRef
    Hotto AM, Castandet B, Gilet L, Higdon A, Condon C, Stern DB (2015) Arabidopsis chloroplast mini-ribonuclease III participates in rRNA maturation and intron recycling. Plant Cell 27:724–740PubMed CrossRef
    Hovde BT, Starkenburg SR, Hunsperger HM, Mercer LD, Deodato CR, Jha RK, Chertkov O, Monnat RJ, Cattolico RA (2014) The mitochondrial and chloroplast genomes of the haptophyte Chrysochromulina tobin contain unique repeat structures and gene profiles. BMC Genom 15:604CrossRef
    Ishida K, Green BR (2002) Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc Natl Acad Sci USA 99:9294–9299PubMed PubMedCentral CrossRef
    Jackson CJ, Gornik SG, Waller RF (2013) A tertiary plastid gains RNA editing in its new host. Mol Biol Evol 30:788–792PubMed CrossRef
    Janouškovec J, Horák A, Oborník M, Lukes J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954PubMed PubMedCentral CrossRef
    Janouškovec J, Sobotka R, Lai DH, Flegontov P, Koník P, Komenda J, Ali S, Prásil O, Pain A, Oborník M, Lukes J, Keeling PJ (2013) Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of Chromera velia. Mol Biol Evol 30:2447–2462PubMed CrossRef
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649PubMed PubMedCentral CrossRef
    Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, Dyhrman ST, Edvardsen B, Gates RD, Gobler CJ, Greenwood SJ, Guida SM, Jacobi JL, Jakobsen KS, James ER, Jenkins B, John U, Johnson MD, Juhl AR, Kamp A, Katz LA, Kiene R, Kudryavtsev A, Leander BS, Lin S, Lovejoy C, Lynn D, Marchetti A, McManus G, Nedelcu AM, Menden-Deuer S, Miceli C, Mock T, Montresor M, Moran MA, Murray S, Nadathur G, Nagai S, Ngam PB, Palenik B, Pawlowski J, Petroni G, Piganeau G, Posewitz MC, Rengefors K, Romano G, Rumpho ME, Rynearson T, Schilling KB, Schroeder DC, Simpson AG, Slamovits CH, Smith DR, Smith GJ, Smith SR, Sosik HM, Stief P, Theriot E, Twary SN, Umale PE, Vaulot D, Wawrik B, Wheeler GL, Wilson WH, Xu Y, Zingone A, Worden AZ (2014) The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12:1001889CrossRef
    Knoop V (2011) When you can’t trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 68:567–586PubMed CrossRef
    Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucl Acids Res 32:11–16PubMed PubMedCentral CrossRef
    Lin CP, Ko CY, Kuo CI, Liu MS, Schafleitner R, Chen LF (2015) Transcriptional slippage and RNA editing increase the diversity of transcripts in chloroplasts: insight from deep sequencing of Vigna radiata genome and transcriptome. PLoS One 10:0129396
    Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana t-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463PubMed CrossRef
    Lloyd AH, Timmis JN (2011) The origin and characterization of new nuclear genes originating from a cytoplasmic organellar genome. Mol Biol Evol 28:2019–2028PubMed CrossRef
    Miller JJ, Delwiche CF (2015) Phylogenomic analysis of Emiliania huxleyi provides evidence for haptophyte–stramenopile association and a chimeric haptophyte nuclear genome. Mar Genom 21:31–42CrossRef
    Mungpakdee S, Shinzato C, Takeuchi T, Kawashima T, Koyanagi R, Hisata K, Tanaka M, Goto H, Fujie M, Lin S, Satoh N, Shoguchi E (2014) Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome. Genom Biol Evol 6:1408–1422CrossRef
    Nelson MJ, Dang YK, Filek E, Zhang ZD, Yu VWC, Ishida K, Green BR (2007) Identification and transcription of transfer RNA genes in dinoflagellate plastid minicircles. Gene 392:291–298PubMed CrossRef
    Nisbet RER, Hiller RG, Barry ER, Skene P, Barbrook AC, Howe CJ (2008) Transcript analysis of dinoflagellate plastid gene minicircles. Protist 159:31–39PubMed CrossRef
    Park D, Morris AR, Battenhouse A, Iyer VR (2014) Simultaneous mapping of transcript ends at single-nucleotide resolution and identification of widespread promoter-associated non-coding RNA governed by TATA elements. Nucl Acids Res 42:3736–3749PubMed PubMedCentral CrossRef
    Patron NJ, Waller RF (2007) Transit peptide diversity and divergence: a global analysis of plastid targeting signals. BioEssays 29:1048–1058PubMed CrossRef
    Patron NJ, Waller RF, Keeling PJ (2006) A tertiary plastid uses genes from two endosymbionts. J Mol Biol 357:1373–1382PubMed CrossRef
    Puerta MVS, Bachvaroff TR, Delwiche CF (2005) The complete plastid genome sequence of the haptophyte Emiliania huxleyi: a comparison to other plastid genomes. DNA Res 12:151–156CrossRef
    Richardson E, Dorrell RG, Howe CJ (2014) Genome-wide transcript profiling reveals the coevolution of chloroplast gene sequences and transcript processing pathways in the fucoxanthin dinoflagellate Karlodinium veneficum. Mol Biol Evol 31:2376–2386PubMed PubMedCentral CrossRef
    Rock CD, Barkan A, Taylor WC (1987) The maize plastid psbB-psbF-petB-petD gene cluster- spliced and unspliced petB and petD RNAs encode alternative products. Curr Genet 12:69–77PubMed CrossRef
    Rombel IT, Sykes KF, Rayner S, Johnston SA (2002) ORF-FINDER: a vector for high-throughput gene identification. Gene 282:33–41PubMed CrossRef
    Sakurai I, Stazic D, Eisenhut M, Vuorio E, Steglich C, Hess WR, Aro E-M (2012) Positive regulation of psbA gene expression by cis-encoded antisense RNAs in Synechocystis sp. PCC 6803. Plant Physiol 160:1000–1010PubMed PubMedCentral CrossRef
    Scotto-Lavino E, Du G, Frohman MA (2006) Amplification of 5′ end cDNA with ‘new RACE’. Nat Protocol 1:3056–3061CrossRef
    Sharwood RE, Halpert M, Luro S, Schuster G, Stern DB (2011) Chloroplast RNase J compensates for inefficient transcription termination by removal of antisense RNA. RNA 17:2165–2176PubMed PubMedCentral CrossRef
    Smith DR, Crosby K, Lee RW (2011) Correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis. Genom Biol Evol 3:365–371CrossRef
    Stern DB, Goldschmidt-Clermont M, Hanson MR (2010) Chloroplast RNA metabolism. Ann Rev Plant Biol 61(61):125–155CrossRef
    Takishita K, Nakano K, Uchida A (1999) Preliminary phylogenetic analysis of plastid-encoded genes from an anomalously pigmented dinoflagellate Gymnodinium mikimotoi (Gymnodiniales, Dinophyta). Phycol Res 47:257–262CrossRef
    Wang YL, Morse D (2006) Rampant polyuridylylation of plastid gene transcripts in the dinoflagellate Lingulodinium. Nucl Acids Res 34:613–619PubMed PubMedCentral CrossRef
    Yokoyama A, Takahashi F, Kataoka H, Hara Y, Nozaki H (2011) Evolutionary analyses of the nuclear-encoded photosynthetic gene psbO from tertiary plastid-containing algae in Dinophyta. J Phycol 47:407–414CrossRef
    Zandueta-Criado A, Bock R (2004) Surprising features of plastid ndhD transcripts: addition of non-encoded nucleotides and polysome association of mRNAs with an unedited start codon. Nucl Acids Res 32:542–550PubMed PubMedCentral CrossRef
    Zauner S, Greilinger D, Laatsch T, Kowallik KV, Maier UG (2004) Substitutional editing of transcripts from genes of cyanobacterial origin in the dinoflagellate Ceratium horridum. FEBS Lett 577:535–538PubMed CrossRef
    Zghidi-Abouzid O, Merendino L, Buhr F, Ghulam MM, Lerbs-Mache S (2011) Characterization of plastid psbT sense and antisense RNAs. Nucl Acids Res 39:5379–5387PubMed PubMedCentral CrossRef
    Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, Lin S (2007) Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci USA 104:4618–4623PubMed PubMedCentral CrossRef
  • 作者单位:Richard G. Dorrell (1) (2)
    George A. Hinksman (1)
    Christopher J. Howe (1)

    1. Department of Biochemistry, University of Cambridge, Cambridge, UK
    2. School of Biology, École Normale Supérieure, Paris, France
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Biochemistry
    Plant Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-5028
文摘
Plastids produce a vast diversity of transcripts. These include mature transcripts containing coding sequences, and their processing precursors, as well as transcripts that lack direct coding functions, such as antisense transcripts. Although plastid transcriptomes have been characterised for many plant species, less is known about the transcripts produced in other plastid lineages. We characterised the transcripts produced in the fucoxanthin-containing plastids of the dinoflagellate alga Karenia mikimotoi. This plastid lineage, acquired through tertiary endosymbiosis, utilises transcript processing pathways that are very different from those found in plants and green algae, including 3′ poly(U) tail addition, and extensive substitutional editing of transcript sequences. We have sequenced the plastid transcriptome of K. mikimotoi, and have detected evidence for divergent evolution of fucoxanthin plastid genomes. We have additionally characterised polycistronic and monocistronic transcripts from two plastid loci, psbD-tRNA Met -ycf4 and rpl36-rps13-rps11. We find evidence for a range of transcripts produced from each locus that differ in terms of editing state, 5′ end cleavage position, and poly(U) tail addition. Finally, we identify antisense transcripts in K. mikimotoi, which appear to undergo different processing events from the corresponding sense transcripts. Overall, our study provides insights into the diversity of transcripts and processing intermediates found in plastid lineages across the eukaryotes. Keywords RNA processing Haptophytes Transcript processing Endosymbiotic gene transfer Chloroplast evolution

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700