Critical loads of nitrogen and sulphur to avert acidification and eutrophication in Europe and China
详细信息    查看全文
  • 作者:Maximilian Posch (1)
    Lei Duan (2)
    Gert Jan Reinds (3)
    Yu Zhao (4)

    1. Coordination Centre for Effects (CCE)
    ; RIVM ; P.O.Box 1 ; 3720 BA ; Bilthoven ; The Netherlands
    2. School of Environment
    ; Tsinghua University ; Beijing ; 100084 ; People鈥檚 Republic of China
    3. Alterra
    ; Wageningen University and Research Centre (WUR) ; P.O.Box 47 ; 6700 AA ; Wageningen ; The Netherlands
    4. School of the Environment
    ; Nanjing University ; Nanjing ; 210023 ; People鈥檚 Republic of China
  • 关键词:Critical load function ; Exceedance ; Nitrogen ; Sulphur
  • 刊名:Landscape Ecology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:30
  • 期:3
  • 页码:487-499
  • 全文大小:1,365 KB
  • 参考文献:1. Aherne, J, Farrell, EP, Hall, J, Reynolds, B, Hornung, M (2001) Using multiple chemical criteria for critical loads of acidity in maritime regions. Water Air Soil Pollut Focus 1: pp. 75-90 CrossRef
    2. Alexeyev VA, Markov MV, Birdsey RA (2004) Statistical data on forest fund of Russia and changing of forest productivity in the second half of the XX-th century. Ministry of Natural Resources of the Russian Federation, St. Petersburg Research Institute of Forestry and St. Petersburg Forest Ecological Center
    3. Bartholome, E, Belward, AS, Achard, F, Bartalev, S, Carmona-Moreno, C, Eva, H, Fritz, S, Gregoire, M, Mayaux, P, Stibig, HJ (2002) GLC 2000. Global Land Cover mapping for the year 2000. Project status Nov 2002 (No. EUR 20524 EN). European Commission, Joint Research Centre, Ispra
    4. Bashkin, VN, Kozlov, MY, Priputina, IV, Abramychev, AY, Dedkova, IS (1995) Calculationandmapping of critical loads of S, N and acidity on ecosystems of the Northern Asia. Water Air Soil Pollut 85: pp. 2395-2400 CrossRef
    5. Belyazid, S, Kurz, D, Braun, S, Sverdrup, H, Rihm, B, Hettelingh, J-P (2011) A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate. Environ Pollut 159: pp. 789-801 CrossRef
    6. Bobbink R, Hettelingh J-P (eds) (2011) Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, ISBN 978-90-6960-251-6, Bilthoven, The Netherlands
    7. Bouwman, A, Vuuren, D, Derwent, R, Posch, M (2002) A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Pollut 141: pp. 349-382 CrossRef
    8. Davies CE, Moss D, Hill MO (2004). EUNIS habitat classification revised 2004. European environment agency, European topic centre on nature protection and biodiversity; http://eunis.eea.europa.eu
    9. Vries, W, Reinds, GJ, Posch, M (1994) Assessment of critical loads and their exceedance on European forests using a one-layer steady-state model. Water Air Soil Pollut 72: pp. 357-394 CrossRef
    10. Vries, W, Posch, M, Hewitt, CN, Jackson, AV Critical levels and critical loads as a tool for air quality management. In: Hewitt, AV eds. (2003) Handbook of atmospheric science鈥攑rinciples and applications. Blackwell Science, Oxford, pp. 562-602 CrossRef
    11. Vries, W, Wamelink, GWW, Dobben, H, Kros, J, Reinds, GJ, Mol-Dijkstra, JP, Smart, SM, Evans, CD, Rowe, EC, Belyazid, S, Sverdrup, HU, Hinsberg, A, Posch, M, Hettelingh, J-P, Spranger, T, Bobbink, R (2010) Use of dynamic soil-vegetation models to assess impacts of nitrogen deposition on plant species composition: an overview. Ecol Appl 20: pp. 60-79 CrossRef
    12. Duan, L, Xie, SD, Zhou, ZP, Hao, JM (2000) Critical loads of acid deposition on soil in China. Water Air Soil Pollut 118: pp. 35-51 CrossRef
    13. Duan, L, Hao, JM, Xie, SD, Zhou, ZP, Ye, XM (2002) Determining weathering rates of soils in China. Geoderma 110: pp. 205-225 CrossRef
    14. Duan, L, Huang, YM, Hao, JM, Xie, SD, Hou, M (2004) Vegetation uptake of nitrogen and base cations in China and its role in soil acidification. Sci Total Environ 330: pp. 187-198 CrossRef
    15. Duan, L, Lin, Y, Zhu, XY, Tang, GG, Gao, DF, Hao, JM (2007) Modeling atmospheric transport and deposition of calcium in China. J Tsinghua Univ 47: pp. 1462-1465
    16. Dupr猫, C, Stevens, CJ, Ranke, T, Bleeker, A, Peppler-Lisbach, C, Gowing, DJG, Dise, NB, Dorland, E, Bobbink, R, Diekmann, M (2010) Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob Change Biol 16: pp. 344-357 CrossRef
    European soil database (v 2.0) (No. EUR 19945 EN). European Soil Bureau Network and European Commission, Ispra
    Digital soil map of the world and derived soil properties, CD-ROM. FAO, Rome
    17. Forsius, M, Posch, M, Aherne, J, Reinds, GJ, Christensen, J, Hole, L (2010) Assessing the impacts of long-range sulfur and nitrogen deposition on arctic and sub-arctic ecosystems. Ambio 39: pp. 136-147 CrossRef
    18. Hao, JM, Duan, L, Zhou, XL, Fu, LX (2001) Application of a LRT model to acid rain control in China. Environ Sci Technol 35: pp. 3407-3415 CrossRef
    19. Hao, JM, Qi, CL, Duan, L, Zhou, ZP (2003) Evaluating critical loads of nutrient nitrogen on soils in China using the SMB method. J Tsinghua Univ 43: pp. 849-853
    20. Henriksen, A, K盲m盲ri, J, Posch, M, Wilander, A (1992) Critical loads of acidity: nordic surface waters. Ambio 21: pp. 356-363
    21. Hettelingh, J-P, Sverdrup, H, Zhao, D (1995) Deriving critical loads for Asia. Water Air Soil Pollut 85: pp. 2565-2570 CrossRef
    22. Hettelingh, J-P, Posch, M, Smet, PAM, Downing, RJ (1995) The use of critical loads in emission reduction agreements in Europe. Water Air Soil Pollut 85: pp. 2381-2388 CrossRef
    23. Hettelingh, J-P, Posch, M, Smet, PAM (2001) Multi-effect critical loads used in multi-pollutant reduction agreements in Europe. Water Air Soil Pollut 130: pp. 1133-1138 CrossRef
    24. Hettelingh, J-P, Posch, M, Slootweg, J, Reinds, GJ, Spranger, T, Tarrason, L (2007) Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. Water Air Soil Pollut Focus 7: pp. 379-384 CrossRef
    25. Hettelingh, J-P, Posch, M, Velders, GJM, Ruyssenaars, P, Adams, M, Leeuw, F, L眉kewille, A, Maas, R, Sliggers, J, Slootweg, J (2013) Assessing interim objectives for acidification, eutrophication and ground-level ozone of the EU National Emission Ceilings Directive with 2001 and 2012 knowledge. Atmos Environ 75: pp. 129-140 CrossRef
    26. Hodson, ME, Langan, SJ (1999) Considerations of uncertainty in setting critical loads of acidity of soils: the role of weathering rate determination. Environ Pollut 106: pp. 73-81 CrossRef
    27. ICP Modelling and Mapping (2004) Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends. Texte 52/04, Federal Environmental Agency, Berlin, Germany [for latest updates see www.icpmapping.org
    28. Jacobsen, C, Rademacher, P, Meesenburg, H, Meiwes, KJ (2002) Element contents in tree compartments鈥攍iterature study and data collection [in German]. Nieders盲chsische Forstliche Versuchsanstalt, G枚ttingen
    29. Jeffries, DS, Lam, DCL (1993) Assessment of the effect of acidic deposition on Canadian lakes: determination of critical loads for sulphate deposition. Water Sci Technol 28: pp. 183-187
    30. JRC (2006) The European Soil Data Base. Distribution version v2.0. Retrieved 01-01-2007, http://eusoils.jrc.it/ESDB_Archive/ESDBv2/index.htm
    31. Kuylenstierna, JCI, Rodhe, H, Cinderby, S, Hicks, K (2001) Acidification in developing countries: ecosystem sensitivity and the critical load approach on a global scale. Ambio 30: pp. 20-28
    32. Lamarque, J-F, Dentener, F, McConnell, J, Ro, C-U, Shaw, M, Vet, R, Bergmann, D, Cameron-Smith, P, Dalsoren, S, Doherty, R, Faluvegi, G, Ghan, SJ, Josse, B, Lee, YH, MacKenzie, IA, Plummer, D, Shindell, DT, Skeie, RB, Stevenson, DS, Strode, S, Zeng, G, Curran, M, Dahl-Jensen, D, Das, S, Fritzsche, D, Nolan, M (2013) Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes. Atmos Chem Phys 13: pp. 7997-8018 CrossRef
    33. Lee, DS, Pacyna, JM (1999) An industrial emissions inventory of calcium for Europe. Atmos Environ 33: pp. 1687-1697 CrossRef
    34. Leemans, R, Born, GJ (1994) Determining the potential distribution of vegetation, crops and agricultural productivity. Water Air Soil Pollut 76: pp. 133-161 CrossRef
    35. New, M, Hulme, M, Jones, PD (1999) Representing twentieth century space-time climate variability. Part 1: development of a 1961鈥?0 mean monthly terrestrial climatology. J Clim 12: pp. 829-856 CrossRef
    Nilsson, J, Grennfelt, P eds. (1988) Critical loads for sulphur and nitrogen: Milj酶rapport 15. Nordic Council of Ministers, Copenhagen
    36. Pardo, LH, Fenn, ME, Goodale, CL, Geiser, LH, Driscoll, CT, Allen, EB, Baron, JS, Bobbink, R, Bowman, WD, Clark, CM, Emmett, B, Gilliam, FS, Greaver, TL, Hall, SJ, Lilleskov, EA, Liu, L, Lynch, JA, Nadelhoffer, KJ, Perakis, SS, Robin-Abbott, MJ, Stoddard, JL, Weathers, KC, Dennis, RL (2011) Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecol Appl 21: pp. 3049-3082 CrossRef
    37. Posch, M, Vries, W Derivation of critical loads by steady-state and dynamic soil models. In: Langan, SJ eds. (1999) The impact of nitrogen deposition on natural and semi-natural ecosystems. Kluwer, Dordrecht, pp. 213-234 CrossRef
    38. Posch, M, Hettelingh, J-P, Smet, PAM (2001) Characterization of critical load exceedances in Europe. Water Air Soil Pollut 130: pp. 1139-1144 CrossRef
    39. Posch, M, Aherne, J, Hettelingh, J-P (2011) Nitrogen critical loads using biodiversity-related critical limits. Environ Pollut 159: pp. 2223-2227 CrossRef
    40. Prentice, IC, Sykes, MT, Cramer, W (1993) A simulation model for the transient effects of climate change on forest landscapes. Ecol Model 65: pp. 51-70 CrossRef
    41. Reinds, GJ, Vries, W (2010) Uncertainties in critical loads and target loads of sulphur and nitrogen for European forests: analysis and quantification. Sci Total Environ 408: pp. 1960-1970 CrossRef
    42. Reinds, GJ, Posch, M, Vries, W, Slootweg, J, Hettelingh, J-P (2008) Critical loads of sulphur and nitrogen for terrestrial ecosystems in Europe and northern Asia using different soil chemical criteria. Water Air Soil Pollut 193: pp. 269-287 CrossRef
    43. Reis, S, Grennfelt, P, Klimont, Z, Amann, M, ApSimon, H, Hettelingh, J-P, Holland, M, Gall, A-C, Maas, R, Posch, M, Spranger, T, Sutton, MA, Williams, M (2012) From acid rain to climate change. Science 338: pp. 1153-1154 science.1226514" target="_blank" title="It opens in new window">CrossRef
    44. Schelhaas, MJ, Varis, S, Schuck, A, Nabuurs, GJ (1999) EFISCEN鈥檚 european forest resource database. European Forest Institute, Joensuu
    45. Schelhaas MJ, Eggers J, Lindner M, Nabuurs GJ, Pussinen A, Paivinen R, Schuck A, Verkerk PJ, Van der Werf DC (2007) Model documentation for the European Forest Information Scenario Model (EFISCEN 3.1.3). Alterra Report 1559, Wageningen, The Netherlands
    46. SinoMaps (1984) Atlas of the People鈥檚 Republic of China, 3rd ed (in Chinese). SinoMaps Press, Beijing
    47. Skeffington, RA, Whitehead, PG, Heywood, E, Hall, JR, Wadsworth, RA, Reynolds, B (2007) Estimating uncertainty in terrestrial critical loads and their exceedances at four sites in the UK. Sci Total Environ 382: pp. 199-213 CrossRef
    48. Sverdrup, H, Vries, W (1994) Calculating critical loads for acidity with the simple mass balance method. Water Air Soil Pollut 72: pp. 143-162 CrossRef
    49. Loon, M, Tarrason, L, Posch, M (2005) Modelling base cations in Europe. EMEP Technical Report MSC-W 2/2005. Norwegian Meteorological Institute, Oslo
    50. Vuuren, DP, Edmonds, J, Kainuma, M, Riahi, K, Thomson, A, Hibbard, K, Hurtt, GC, Kram, T, Krey, V, Lamarque, J-F, Masui, T, Meinshausen, M, Nakicenovic, N, Smith, SJ, Rose, SK (2011) The representative concentration pathways: an overview. Clim Change 109: pp. 5-31 CrossRef
    51. Wamelink, GWW, Goedhart, PW, Malinowska, AH, Frissel, JY, Wegman, RJM, Slim, PA, Dobben, HF (2011) Ecological ranges for the pH and NO3 of syntaxa: a new basis for the estimation of critical loads for acid and nitrogen deposition. J Veg Sci 22: pp. 741-749 CrossRef
    Wu, ZY eds. (1980) Chinese Vegetation (in Chinese). Science Press, Beijing
    52. Xiong Y, Li QK (eds) (1987). Chinese Soils, 2nd ed (in Chinese). Science Press, Beijing
    53. Zak, SK, Beven, KJ (1999) Equifinality, sensitivity and predictive uncertainty in the estimation of critical loads. Sci Total Environ 236: pp. 191-214 CrossRef
    54. Zhao, Y, Duan, L, Larssen, T, Hu, LH, Hao, JM (2007) Simultaneous assessment of depositions of base cations, sulfur and nitrogen using an extended critical load function for acidification. Environ Sci Technol 41: pp. 1815-1820 CrossRef
    55. Zhao, Y, Duan, L, Lei, Y, Xing, J, Nielsen, CP, Hao, JM (2011) Will PM control undermine China鈥檚 efforts to reduce soil acidification?. Environ Pollut 159: pp. 2726-2732 CrossRef
    56. Zhu, XY, Duan, L, Tang, GG, Hao, JM, Dong, GX (2004) Estimation of atmospheric emissions of base cations in China. J Tsinghua Univ 44: pp. 1176-1179
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Landscape Ecology
    Plant Ecology
    Forestry Management
    Forestry
    Ecology
    Plant Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-9761
文摘
Introduction Forests and other (semi-)natural ecosystems provide a range of ecosystem services, such as purifying water, stabilizing soils and nutrient cycles, and providing habitats for plants and wildlife. Critical loads are a well-established effects-based approach that has been used for assessing the environmental consequences of air pollution on large regional or national scales. Materials and methods Typically critical loads of sulphur (S) and nitrogen (N) have been derived separately for characterizing the vulnerability of ecosystems to acidification (by S and N) and eutrophication (by N). In this paper we combine the two approaches and use multiple criteria, such as critical pH and N concentrations in soil solution, to define a single critical load function of N and S. Results and conclusions The methodology is used to compute and map critical loads of N and S in two regions of comparable size, Europe and China. We also assess the exceedance of those critical loads under globally modelled present and selected future N and S depositions. We also present an analysis, in which the sensitivity of the critical loads and their exceedances to the choice of the chemical criteria is investigated. As pH and N concentration in soil solution are abiotic variables also linked to plant species occurrence, this approach has the potential for deriving critical loads for plant species diversity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700