Impacts of an abundant introduced ecosystem engineer within mudflats of the southeastern US coast
详细信息    查看全文
  • 作者:James E. Byers (1)
    Paul E. Gribben (2)
    Caitlin Yeager (1)
    Erik E. Sotka (3)
  • 关键词:Epibiota ; Exotic species ; Foundation species ; Habitat conversion ; Habitat modifier ; Habitat provisioning species ; Invasive species ; Non ; indigenous species ; Novel structure ; Structural mimic experiment
  • 刊名:Biological Invasions
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:14
  • 期:12
  • 页码:2587-2600
  • 全文大小:1783KB
  • 参考文献:1. Aikins S, Kikuchi E (2002) Grazing pressure by amphipods on microalgae in Gamo Lagoon, Japan. Mar Ecol Prog Ser 245:171-79 CrossRef
    2. Allen JA (1998) Mangroves as alien species: the case of Hawaii. Glob Ecol Biogeogr Lett 7:61-1 CrossRef
    3. Andersen FO, Hargrave BT (1984) Effects of / Spartina detritus enrichment on aerobic anaerobic benthic metabolism in an intertidal sediment. Mar Ecol Prog Ser 16:161-71 CrossRef
    4. Arenas F, Viejo RM, Fernandez C (2002) Density-dependent regulation in an invasive seaweed: responses at plant and modular levels. J Ecol 90:820-29 CrossRef
    5. Bell SS, Coen LD (1982) Investigations on epibenthic meiofauna.2. Influence of microhabitat and macroalgae on abundance of small invertebrates on / Diopatra cuprea (Bosc) (Polychaeta, Onuphidae) tube caps in Virginia. J Exp Mar Biol Ecol 61:175-88 CrossRef
    6. Berke SK (2012) Biogeographic variability in ecosystem engineering: patterns in the abundance and behavior of the tube-building polychaete / Diopatra cuprea. Mar Ecol Prog Ser 447:1-3 CrossRef
    7. Berke SK, Woodin SA (2008) Tube decoration may not be cryptic for / Diopatra cuprea (Polychaeta: Onuphidae). Biol Bull 214:50-6 CrossRef
    8. Blackwelder BC (1972) Algae of the marshlands. In: Port Royal Sound environmental study. S.C. Water Resources Commission, Columbia, pp 265-69
    9. Buchanan JB (1984) Sediment analysis. In: Holme NA, McIntyre AD (eds) Methods for the study of marine benthos. Blackwell, Oxford, pp 41-5
    10. Byers JE (2007) Lessons from disparate ecosystem engineers. In: Cuddington K, Byers JE, Wilson W, Hastings A (eds) Ecosystem engineering: plants to protists. Academic Press, Burlington, MA, pp 203-08 CrossRef
    11. Byers JE, Wright JT, Gribben PE (2010) Variable direct and indirect effects of a habitat-modifying invasive species on mortality of native fauna. Ecology 91:1787-798 CrossRef
    12. Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153-66 CrossRef
    13. Edgar GJ (1993) Measurement of the carrying capacity of benthic habitats using a metabolic rate based index. Oecologia 95:115-21
    14. Freshwater DW, Montgomery F, Greene JK, Hamner RM, Williams M, Whitfield PE (2006) Distribution and identification of an invasive / Gracilaria species that is hampering commercial fishing operations in southeastern North Carolina, USA. Biol Invasions 8:631-37
    15. Gribben PE, Byers JE, Clements M, McKenzie LA, Steinberg PD, Wright JT (2009) Behavioural interactions between ecosystem engineers control community species richness. Ecol Lett 12:1127-136 CrossRef
    16. Hastings A, Byers JE, Crooks JA, Cuddington K, Jones CG, Lambrinos JG, Talley TS, Wilson WG (2007) Ecosystem engineering in space and time. Ecol Lett 10:153-64 CrossRef
    17. Hoffmann WA, Poorter H (2002) Avoiding bias in calculations of relative growth rate. Ann Bot 90:37-2 CrossRef
    18. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3-5 CrossRef
    19. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373-86 CrossRef
    20. Kennedy TA, Hobbie SE (2004) Saltcedar ( / Tamarix ramosissima) invasion alters organic matter dynamics in a desert stream. Freshw Biol 49:65-6 CrossRef
    21. Kotta J, Paalme T, Kersen P, Martin G, Herkul K, Moller T (2008) Density dependent growth of the red algae / Furcellaria lumbricalis and / Coccotylus truncatus in the West Estonian Archipelago Sea, northern Baltic Sea. Oceanologia 50:577-85
    22. Nyberg CD, Wallentinus I (2009) Long-term survival of an introduced red alga in adverse conditions. Mar Biol Res 5:304-08 CrossRef
    23. Nyberg CD, Thomsen MS, Wallentinus I (2009) Flora and fauna associated with the introduced red alga / Gracilaria vermiculophylla. Eur J Phycol 44:395-03 CrossRef
    24. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3-9 CrossRef
    25. Reed DC (1990) An experimental evaluation of density dependence in a subtidal algal population. Ecology 71:2286-296 CrossRef
    26. Ricciardi A, Atkinson SK (2004) Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol Lett 7:781-84 CrossRef
    27. Sandifer PA, Miglarese JV, Calder DR, Manzi JJ, Barclay LA (1980) Ecological characterization of the sea island coastal region of South Carolina and Georgia. Volume III: biological features of the characterization area. U.S. Fish and Wildlife Service, Washington, DC
    28. Stephenson T, Stephenson A (1952) Life between tide-marks in North America: II. Northern Florida and the Carolinas. J Ecol 40:1-9 CrossRef
    29. Tenore KR (1977a) Utilization of aged detritus derived from different sources by polychaete / Capitella capitata. Mar Biol 44:51-5 CrossRef
    30. Tenore KR (1977b) Growth of / Capitella capitata cultured on various levels of detritus derived from different sources. Limnol Oceanogr 22:936-41 CrossRef
    31. Thomsen MS (2010) Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquat Invasions 5:341-46 CrossRef
    32. Thomsen M, McGlathery K (2005) Facilitation of macroalgae by the sedimentary tube forming polychaete. Estuar Coast Shelf Sci 62:63-3 CrossRef
    33. Thomsen MS, McGlathery KJ (2007) Stress tolerance of the invasive macroalgae / Codium fragile and / Gracilaria vermiculophylla in a soft-bottom turbid lagoon. Biol Invasions 9:499-13 CrossRef
    34. Thomsen MS, McGlathery KJ, Tyler AC (2006) Macroalgal distribution patterns in a shallow, soft-bottom lagoon, with emphasis on the nonnative / Gracilaria vermiculophylla and / Codium fragile. Estuaries Coasts 29:465-73
    35. Thomsen MS, Wernberg T, Staehr P, Krause-Jensen D, Risgaard-Petersen N, Silliman BR (2007) Alien macroalgae in Denmark: a broad-scale national perspective. Mar Biol Res 3:61-2 CrossRef
    36. Thomsen MS, McGlathery KJ, Schwarzschild A, Silliman BR (2009) Distribution and ecological role of the non-native macroalga / Gracilaria vermiculophylla in Virginia salt marshes. Biol Invasions 11:2303-316 CrossRef
    37. Thomsen MS, Wernberg T, Altieri AH, Tuya F, Gulbransen D, McGlathery KJ, Holmer M, Silliman BR (2010) Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr Comp Biol 50:158-75 CrossRef
    38. Weinberger F, Buchholz B, Karez R, Wahl M (2008) The invasive red alga / Gracilaria vermiculophylla in the Baltic Sea: adaptation to brackish water may compensate for light limitation. Aquat Biol 3:251-64 CrossRef
    39. Wright JT, Byers JE, Koukoumaftsis LP, Ralph PJ, Gribben PE (2010) Native species behaviour mitigates the impact of habitat-forming invasive seaweed. Oecologia 163:527-34 CrossRef
    40. Wright JT, Byers JE, Koukoumaftsis LP, Gribben PE (2012) Differences in anti-predator traits of a native bivalve following invasion by a habitat-forming seaweed. Mar Freshw Res 63:246-50. doi:10.1071/MF11184 CrossRef
    41. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009). Mixed effects models and extensions in ecology with R. Springer, Berlin
  • 作者单位:James E. Byers (1)
    Paul E. Gribben (2)
    Caitlin Yeager (1)
    Erik E. Sotka (3)

    1. Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
    2. School of the Environment, Plant Physiology and Climate Change Cluster, University of Technology, Sydney, NSW, 2007, Australia
    3. Biology Department and the Grice Marine Laboratory, College of Charleston, Charleston, SC, 29412, USA
  • ISSN:1573-1464
文摘
Invasive ecosystem engineers can have far-reaching effects on systems, especially if they provide structure where none was before. The non-native seaweed Gracilaria vermiculophylla has proliferated on estuarine mudflats throughout the southeastern US, including areas (South Carolina and Georgia) that historically were extremely low in seaweed biomass. Quantitative field surveys across 150?km of high salinity estuaries revealed that the density of the native onuphid polychaete Diopatra cuprea and the aboveground height of its biogenic tubes, which Diopatra decorates with drifting debris and seaweed, positively influenced Gracilaria biomass. The abundance of Gracilaria epifauna, composed primarily of amphipods and small snails, increased with Gracilaria biomass at many locations in our field surveys. To examine whether epifauna were facilitated by Gracilaria we experimentally manipulated Gracilaria biomass in two locations. Consistent with the field surveys, we found that increasing Gracilaria biomass facilitated epifauna, particularly amphipods and snails. Epifaunal densities on Gracilaria were higher than on a biologically-inert structural mimic of Gracilaria (plastic aquarium alga), indicating that epifauna colonize Gracilaria because Gracilaria provisions both physical structure and a biological resource. We also quantified the seaweed’s net rate of productivity and decomposition. Primary production of Gracilaria was variable, but massive in some areas (up to 200?% net biomass increase in 8?weeks). The seaweed rapidly degraded upon burial in silty sediments (79?% loss in mass within 10?days) and thus may represent an important new addition to detrital foodwebs. As a copious, novel source of primary production, detritus, and desirable habitat for epifauna, Gracilaria has the potential to transform southeastern US estuaries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700