New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming processes
详细信息    查看全文
  • 作者:James A. Saunders ; Ryan Mathur ; George D. Kamenov ; Toru Shimizu…
  • 关键词:Epithermal ores ; Copper isotopes ; Sulfur isotopes ; Lead isotopes ; Magmatic source ; Nanoparticles
  • 刊名:Mineralium Deposita
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:51
  • 期:1
  • 页码:1-11
  • 全文大小:1,173 KB
  • 参考文献:Asadi S, Mathur M, Moore F, Zarasvandi A (2015) Copper isotope fractionation in the Meiduk porphyry copper deposit, Northwest of Kerman Cenozoic magmatic arc, Iran. Terra Nova, 27-36-41
    Bishop MC, Moynier F, Weinstein C, Fraboulet J-G, Wang K, Foriel J (2012) The Cu isotopic composition of iron meteorites. Meteor Plan Sci 47:268–276CrossRef
    Christie AB, Simpson MP, Brathwaite RL, Mauk JL, Simmons SF (2007) Epithermal Au-Ag and related deposits of the Hauraki Goldfield, Coromandel Volcanic Zone, New Zealand. Econ Geol 102:785–816CrossRef
    Faure K, Matsuhisa Y, Metsugi H, Mizota C (2002) The Hishikari Au-Ag epithermal deposit, Japan: oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids. Econ Geol 97:481–498CrossRef
    Foley NK, Ayuso RA (2012) Gold deposits of the Carolina Slate Belt, southeastern United States—age and origin of the major gold producers. USGS Op-File Rept 2012-1179., p 30
    Fulignati P, Sbrana A (1998) Presence of native gold and tellurium in the active high-sulfidation hydrothermal system of the La Fossa volcano (Vulcano, Italy). J Volc Geotherm Resc 86:187–198CrossRef
    Hayashi K, Maruyama T, Satoh H (2000) Submillimeter scale variation of oxygen isotopes of vein quartz at the Hishikari Deposit, Japan. Resource Geol 50:141–150CrossRef
    Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527CrossRef
    Heinrich CA, Driesner T, Stefansson A, Seward TM (2004) Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology 32:761–764CrossRef
    Hough RM, Noble RRP, Hitchen GJ et al (2008) Naturally occurring gold nanoparticles and nanoplates. Geology 6:71–74
    Izawa E, Urashima Y, Ibaraki K et al (1990) The Hishikari gold deposit: high grade epithermal veins in quaternary volcanics of southern Kyushu, Japan. J Geochem Explor 36:1–56CrossRef
    John DA, Hofstra AH, Fleck RF, Brummer JE, Saderholm EC (2003) Geologic setting and genesis of the Mule Canyon low-sulfidation epithermal gold-silver deposit, North-Central Nevada. Econ Geol 98:425–463CrossRef
    Kamenov GD, Mueller P, Perfit M (2004) Optimization of mixed Pb-Tl solutions for high precision isotopic analyses by MC-ICP-MS. J Anal A Spectrom 19:1262–1267CrossRef
    Kamenov GD, Saunders JA, Hames WE, Unger D (2007) Mafic magmas as sources for gold in middle-Miocene epithermal deposits of northern Great Basin, USA: evidence from Pb isotopic compositions of native gold. Econ Geol 102:1191–1195CrossRef
    Kamenov GD, Melchiorre EB, Ricker FN, DeWitt E (2013) Insights from Pb isotopes for native gold formation during hypogenic and hypergenic processes at Rich Hill, Arizona. Econ Geol 108:1577–1589CrossRef
    Li W, Jackson SE, Pearson NJ, Grahma S (2010) Copper isotopic zonation in the Northparkes porphyry Cu–Au deposit, SE Australia. Geochim Cosmochim Acta 74:4078–4096CrossRef
    Lindgren W (1915) Geology and mineral deposits of the national mining district, Nevada. US Geol Surv Bull 601:58
    Lindgren W (1933) Mineral deposits, 4th edn. McGraw Hill, New York
    Lowenstern JB, Hurwitz S (2008) Monitoring a supervolcano in repose: heat and volatile flux at the Yellowstone Caldera. Elements 4:35–40CrossRef
    Marinova I, Ganev V, Titorenkova R (2014) Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria. Mineral Deposita 49:49–74CrossRef
    Mathur R, Dendas M, Titley S, Phillips A (2010) Patterns in the copper isotope composition of minerals in porphyry copper deposits in southwestern United States. Econ Geol 105:1457–1467CrossRef
    Matsuhisa Y, Aoki M (1994) Temperature and oxygen isotope variations during formation of the Hishikari epithermal gold-silver veins, southern Kyushu, Japan. Econ Geol 89:1608–1613CrossRef
    Meeker KA, Chuan RL, Kyle PR, Palais JM (1991) Emission of elemental gold particles from Mount Erebus, Ross Island, Antarctica. Geoph Res Lett 18:1405–1408CrossRef
    Nagayama T (1993) Precipitation sequence of veins at the Hishikari deposits, Kyushu, Japan. Resource Geol Spec Issue 14:13–28 (Japan)
    O’Neil JR, Silberman ML, Fabbi BP, Chesterman CW (1973) Stable isotope and chemical relations during mineralization in the Bodie Mining District, Mono County, California. Econ Geol 68:765–784CrossRef
    Pope JG, Brown KL, McConchie DM (2005) Gold concentrations in springs at Waiotapu, New Zealand: implications for precious metal deposition in geothermal systems. Econ Geol 100:677–687CrossRef
    Richards JP (2009) Post-subduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology 37:247–250CrossRef
    Saunders JA (1990) Colloidal transport of gold and silica in epithermal precious metal systems: evidence from the Sleeper deposit, Humboldt County, Nevada. Geology 18:757–760CrossRef
    Saunders JA (1994) Silica and gold textures at the Sleeper deposit, Humboldt County, Nevada: evidence for colloids and implications for ore-forming processes. Econ Geol 89:628–638CrossRef
    Saunders JA (2012) Textural evidence of episodic introduction of metallic nanoparticles into bonanza epithermal ores. Minerals 2:228–243CrossRef
    Saunders JA, Schoenly PA (1995) Boiling, colloid nucleation and aggregation, and the genesis of bonanza gold mineralization, Sleeper deposit, Nevada. Mineral Deposita 30:199--211
    Saunders JA, Brueseke ME (2012) Volatility of metal(loids) and the geochemistry of epithermal Au-Ag ores in western USA. Econ Geol 107:165–172CrossRef
    Saunders JA, Unger DL, Kamenov GD, Fayek M, Hames WE, Utterback WC (2008) Genesis of Middle Miocene Yellowstone-hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin Region, USA. Mineral Deposita 43:715–734CrossRef
    Saunders JA, Hofstra AH, Goldfarb RJ, Reed MH (2014) Geochemistry of hydrothermal gold deposits. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, vol 13, 2nd edn. Elsevier, Oxford, pp 383–424CrossRef
    Seal RR II (2006) Sulfur isotope geochemistry of sulfide minerals. Rev Min Geochem 61:633–677CrossRef
    Shikazono N (1999) Sulfur isotope composition and origin of sulfide sulfur in epithermal Au-Ag vein-type deposits in Japan. Resource Geol Spec Issue 20:39–45
    Shimizu T, Matsueda H, Ishiyama D, Matsubaya O (1998) Genesis of epithermal Au- Ag mineralization of the Koryu Mine, Hokkaido, Japan. Econ Geol 93:303–325CrossRef
    Sillitoe RH, Hedenquist JW (2003) Linkages between volcano tectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Soc Econ Geol Spec Pub 10:315–343
    Simmons SF, White NC, John DA (2005) Geological characteristics of epithermal precious and base metal deposits. 100th Anniv Vol Econ Geol 485-522
    Takahashi R, Matsueda H, Okrugin VM (2012) Ore-forming ages and sulfur isotope study of hydrothermal deposits in Kamchatka, Russia. Res Geol 63:210–223CrossRef
    Taran YA, Bernard A, Gavilanes JC, Africano F (2000) Native gold in mineral precipitates from high-temperature volcanic gases of Colima volcano, Mexico. Appl Geochem 15:337–346CrossRef
    Wall AJ, Mathur R, Post JE, Hearney PJ (2011) Cu isotope fractionation during bornite dissolution: an in situ X-ray diffraction analysis. Ore Geol Rev 42:62–70CrossRef
    Williams-Jones AE, Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geol 100:1287–1312CrossRef
    Yucel M, Gartman A, Chan CS, Luther GW III (2011) Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nature Geosci 4:367–371CrossRef
    Yudovskaya MA, Distler VV, Chaplygin IV et al (2006) Gaseous transport and deposition of gold in magmatic fluid: evidence from the active Kudryavy volcano, Kurile Islands. Miner Deposita 40:828–848CrossRef
    Yuningsih ET, Matsueda H, Rosana MF, Aryani SC (2011) Physicochemical conditions of the Se- and Te-types of epithermal Au-Ag deposits of western Java, Indonesia. Geol Assoc Canada/Mineral Assoc Canada, Abstracts 34:237–238
  • 作者单位:James A. Saunders (1)
    Ryan Mathur (2)
    George D. Kamenov (3)
    Toru Shimizu (4)
    Matthew E. Brueseke (5)

    1. Department of Geosciences, 210 Petrie Hall, Auburn University, Auburn, AL, 36849, USA
    2. Department of Geology, Juniata College, 1700 Moore Street, Huntingdon, PA, 16652, USA
    3. Department of Geological Sciences, University of Florida, 241 Williamson Hall, P.O. Box 112120, Gainesville, FL, 32611, USA
    4. Magma-hydrothermal deposits Research Group, Geological Survey of Japan, AIST, 1-1-1 Higashi, Tsukuba, 305-8567, Japan
    5. Department of Geology, Kansas State University, Manhattan, KS, 66506, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geology
    Mineral Resources
    Mineralogy
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1866
文摘
New Cu, S, and Pb isotope data provide evidence for a magmatic source of metal(loid)s and sulfur in epithermal Au-Ag deposits even though their ore-forming solutions are composed primarily of heated meteoric (ground) waters. The apparent isotopic discrepancy between ore metals and ore-forming solutions, and even between the ore and associated gangue minerals, indicates two different sources of epithermal ore-forming constituents: (1) a shallow geothermal system that not only provides the bulk of water for the ore-forming solutions but also major chemical constituents leached from host rocks (silica, aluminum, potassium, sodium, calcium) to make gangue minerals and (2) metals and metalloids (As, Te, Sb, etc.) and sulfur (±Se) derived from deeper magma bodies. Isotopic data are consistent with either vapor-phase transport of metal(loids) and sulfur and their subsequent absorption by shallow geothermal waters or formation of metallic (Au, Ag, Cu phases) nanoparticles at depth from magmatic fluids prior to encountering the geothermal system. The latter is most consistent with ore textures that indicate physical transport and aggregation of nanoparticles were significant ore-forming processes. The recognition that epithermal Au-Ag ores form in tectonic settings that produce magmas capable of releasing metal-rich fluids necessary to form these deposits can refine exploration strategies that previously often have focused on locating fossil geothermal systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700