Immunoassay for troponin I using a glassy carbon electrode modified with a hybrid film consisting of graphene and multiwalled carbon nanotubes and decorated with platinum nanoparticles
详细信息    查看全文
  • 作者:Shobhita Singal ; Avanish K Srivastava ; Bhasker Gahtori ; Rajesh
  • 关键词:High resolution transmission electron microscopy ; Cyclic voltammetry ; Bioelectrode ; Graphene ; Electrochemical impedance spectroscopy ; Biomarker ; Myocardial infraction
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:183
  • 期:4
  • 页码:1375-1384
  • 全文大小:677 KB
  • 参考文献:1.Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
    2.Coleman J, Khan U, Gunko Y (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706CrossRef
    3.Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRef
    4.Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng 43(3):61–102CrossRef
    5.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306: 666–669.
    6.Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3:301–306CrossRef
    7.Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29:954–965CrossRef
    8.Henry PA, Raut AS, Ubnoske SM, Parker CB, Glass JT (2014) Enhanced electron transfer kinetics through hybrid graphene-carbon nanotubes films. Electrochem Commun 48: 103–106.
    9.Jia F, Duan N, Wu S, Dai R, Wang Z, Li X (2015) Impedimetric salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Microchim Acta doi:10.​1007/​s00604-015-1649-7 .
    10.Li S, Yan Y, Zhong L, Liu P, Sang Y, Cheng W, Ding S (2015) Electrochemical sandwich immunoassay for the peptide hormone prolactin using an electrode modified with graphene, single walled carbon nanotubes and antibody-coated gold nanoparticles. Microchim Acta 182:1917–1924CrossRef
    11.Zhu G, Yi Y, Zou B, Liu Z, Sun J, Wu X (2015) A glassy carbon electrode modified with a multiwalled carbon nanotube@reduced graphene oxide nanoribbon core-shell structure for electrochemical sensing of p-dihydroxybenzene. Microchim Acta 182:871–877CrossRef
    12.Teow Y, Valiyaveettil S (2010) Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale 2:2607–2613CrossRef
    13.Jones SEW, Compton RG (2008) Fabrication and applications of nanoparticle modified electrodes in stripping analysis. Curr Anal Chem 4:177–182CrossRef
    14.Tang J, Tang D (2015) Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review. Microchim Acta 182:2077–2089CrossRef
    15.Zhang L, Wang J, Tian Y (2014) Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors. Microchim Acta 181: 1471–1484.
    16.Li YJ, Gao W, Ci LJ, Wang CM, Ajayan PM (2010) Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 48:1124–1130CrossRef
    17.Li W, Zhai D, Qiu H, Pang H, Pan L, Shi Y, Self-assembly synthesis of high density Pt nanoparticles on chemically reduced graphene sheets. Chem Lett. 40: 104–105.
    18.Nusier MK, Ababneh BM (2006) Diagnostic efficiency of creatinine kinase (CK), CKMB, troponin T and troponin I in patients with suspected acute myocardial infarction. J Health Sci 52(2):180–185CrossRef
    19.Qureshi A, Gurbuz Y, Niazi JH (2012) Biosensors for cardiac biomarkers detection: a review. Sensors Actuators B 171-172: 62–76.
    20.Wang J, Ibanez A, Chatrathi MP, Escarpa A (2001) Electrochemical enzyme immunoassays on microchip platforms. Anal Chem 73:5323–5327CrossRef
    21.Li F, Yu Y, Cui H, Yang D, Bian Z (2013) Label free electrochemiluminescence immunosensor for cardiac troponin I using luminal functionalized gold nanoparticles as a sensing platform. Analyst 138:1844–1850CrossRef
    22.Apple FS, Falahati A, Paulsen PR, Miller EA, Sharkey S (1997) Improves detection of minor ischemic myocardial injury with measurement of serum cardiac troponin I. Clin Chem 43: 2047–2051.
    23.Konsuphol P, Arya SK, Wong CC, Polla LJ, Park MK (2014) Coiled-coil peptide based sensor for ultra-sensitive thrombin detection. Biosens Bioelectron 55:26–31CrossRef
    24.Billah M, Hays HCW, Hodges CS, Ponnambalam S, Vohra R, Millner PA (2012) Mixed self-assembled monolayer (mSAM) based impedimetric immunosensors for cardiac troponin I (cTnI) and soluble lectin-like oxidized low-density lipopreotein receptor-1 (sLOX-1). Sensors Actuators B 173:361–366CrossRef
    25.Periyakaruppan A, Gandhiraman RP, Meyyappan M, Koehne JE (2013) Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays. Anal Chem 85:3858–3863CrossRef
    26.Rajesh PRK, Mulchandani A (2013) Platinum nanoflowers decorated three-dimensional graphene-carbon nanotubes hybrid with enhanced electrocatalytic activity. J. Power Sources 223:23–29CrossRef
    27.Chou A, Bocking T, Singh NK, Gooding JJ (2005) Demonstration of the importance of oxygenated species at the end of carbon nanotubes on their favorable electrochemical properties. Chem Commun 7:842–844CrossRef
    28.Mishra SK, Srivastava AK, Kumar D, Rajesh (2014) Bio-functionalized Pt nanoparticles based electrochemical impedance immunosensor for human cardiac myoglobin. RSC Adv 4:21267–21276CrossRef
    29.Biswas C, Lee YH (2011) Graphene versus carbon nanotubes in electronics devices. Adv Funct Mater 21: 3806–3826.
    30.Bas SZ, Gulce H, Yildiz S, Gulce A (2011) Amperometric biosensors based on deposition of gold and platinum nanoparticles on polyvinylferrocene modified electrode for xanthine detection. Talanta 87:189–196CrossRef
    31.Sharma MK, Rao VK, Merwyn S, Agarwal GS, Upadhyay S, Vijayaraghavan R (2011) A novel piezoelectric immunosensor for the detection of malarial plasmodium falciparum histidine rich protein-2 antigen. Talanta 85:1812–1817CrossRef
    32.Pei R, Cheng Z, Wang E, Yang X (2001) Amplification of antigen-antibody interactions based on biotin labelled protein-streptavidin network complex using impedance spectroscopy. Biosens Bioelectron 16:355–361CrossRef
    33.Gomes EC, Oliveira MAS (2011) Corrosion protection by multilayer coating using layer-by-layer technique. Surf Coat Technol 205:2857–2864CrossRef
    34.Ohno Y, Maehashi K, Matsumoto K (2010) Label free biosensors based on aptamer-modified graphene field-effect transistors. J Am Chem Soc 132:18012–18013CrossRef
    35.Tajima N, Takai M, Ishihara K (2011) Significance of antibody orientation unravelled: well-oriented antibodies recorded high binding affinity. Anal Chem 83: 1969–1976.
    36.Pathirana ST, Barbaree J, Chin BA, Hartell MG, Neely WC, Vodyanoy V (2000) Rapid and sensitive biosensor for salmonella. Biosens Bioelectron 15:135–141CrossRef
    37.Lerner MB, Souza JD, Pazina T, Dailey J, Goldsmith BR, Robinson MK, Jhonson CAT (2012) Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers. ACS Nano 6: 5143–5149.
    38.Singal S, Srivastava AK, Biradar AM, Mulchandani A, Rajesh (2014) Pt nanoparticles chemical-vapor deposited graphene composite based immunosensor for the detection of human cardiac troponin I. Sensors Actuators B 205:363–370CrossRef
    39.Ko S, Kim B, Jo SS, Oh SY, Park JK (2007) Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly (dimethyl siloxane) channel. Biosens Bioelectron 23:51–59CrossRef
    40.Bhalla V, Carrara S, Sharma P, Nangia Y, Suri CR (2012) Gold nanoparticles mediated label-free capacitive detection of cardiac troponin-I. Sensors Actuators B 161:761–768CrossRef
    41.Ahammad AJS, Choi YH, Koh K, Kim JH, Lee JJ, Lee M (2011) Electrochemical detection of cardiac biomarker troponin-I at gold nanoparticle-modified ITO electrode by using open circuit potential. Int J Electrochem Sci 6:1906–1916
    42.Shumkov AA, Suprun EV, Shatinina SZ, Lisitsa AV, Shumyantseva VV, Archakov AI (2013) Gold and silver nanoparticles for electrochemical detection of cardiac troponin-I based on stripping voltammetry. J Bionanosci 3:216–222CrossRef
    43.Jo H, Gu H, Jeon W, Youn H, Her J, Kim SK, Lee J, Shin JH, Ban C (2015) Electrochemical aptasensor of cardiac troponin I for the early diagnosis of acute myocardial infarction. Anal Chem 87(19): 9869–9875.
  • 作者单位:Shobhita Singal (1) (2)
    Avanish K Srivastava (1)
    Bhasker Gahtori (1)
    Rajesh (1) (2)

    1. CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, -110012, India
    2. Academy of Scientific and Innovative research (AcSIR), CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, -110012, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
This article describes a bioelectrode for the determination of human cardiac troponin-I (cTnI). A glassy carbon electrode was coated with a hybrid film of graphene and multiwalled carbon nanotube (G-MWCNT) and modified with platinum nanoparticles (Pt NPs) that were capped with mercaptopropionic acid. The PtNPs were anchored on the G-MWCNT hybrid film via the cross-linker 1-pyrenemethylamine and subsequently functionalized with antibody against troponin (anti-cTnI). The bioelectrode was characterized by transmission electron microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The performance of the immunoelectrode was investigated by electrochemical impedance spectroscopy, and response was fit to Randle’s equivalent circuit model. The charge transfer resistance (Ret) at a.c. frequencies of <1 Hz is found to be a viable sensing parameter. The dissociation constant of the immunoreaction between surface immobilized anti-cTnI and the analyte cTnI is 0.29 nM (with a Hill coefficient of 0.23), this indicating a negative cooperativity and high binding affinity of cTnI for anti-cTnI on the electrode surface. The EIS response is linear in the 1.0 pg mL−1 to 10 ng mL−1 concentration range, and the Ret sensitivity is 145.5 Ω cm2 per decade.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700