Nanoparticle labeling identifies slow cycling human endometrial stromal cells
详细信息    查看全文
  • 作者:Lina Xiang (3)
    Rachel W S Chan (3) (4)
    Ernest H Y Ng (3) (4)
    William S B Yeung (3) (4)
  • 刊名:Stem Cell Research & Therapy
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:5
  • 期:4
  • 全文大小:3,017 KB
  • 参考文献:1. Vaananen HK: Mesenchymal stem cells. / Ann Med 2005, 37:469-79. w window">CrossRef
    2. Ferenczy A, Bergeron C: Histology of the human endometrium: from birth to senescence. / Ann N Y Acad Sci 1991, 622:6-7. w window">CrossRef
    3. Gargett C, Nguyen HT, Ye L: Endometrial regeneration and endometrial stem/progenitor cells. / Rev Endocr Metab Disord 2012, 13:235-51. w window">CrossRef
    4. Schwab KE, Gargett CE: Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. / Hum Reprod 2007, 22:2903-911. w window">CrossRef
    5. Spitzer TL, Rojas A, Zelenko Z, Aghajanova L, Erikson DW, Barragan F, Meyer M, Tamaresis JS, Hamilton AE, Irwin JC, Giudice LC: Perivascular human endometrial mesenchymal stem cells express pathways relevant to self-renewal, lineage specification, and functional phenotype. / Biol Reprod 2012, 86:58. w window">CrossRef
    6. Taylor HS: Endometrial cells derived from donor stem cells in bone marrow transplant recipients. / JAMA 2004, 292:81-5. w window">CrossRef
    7. Du H, Taylor HS: Contribution of bone marrow-derived stem cells to endometrium and endometriosis. / Stem Cells 2007, 25:2082-086. w window">CrossRef
    8. Mikkers H, Frisen J: Deconstructing stemness. / EMBO J 2005, 24:2715-719. w window">CrossRef
    9. Neumuller RA, Knoblich JA: Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. / Genes Dev 2009, 23:2675-699. w window">CrossRef
    10. Snippert HJ, Clevers H: Tracking adult stem cells. / EMBO Rep 2011, 12:113-22. w window">CrossRef
    11. Li L, Clevers H: Coexistence of quiescent and active adult stem cells in mammals. / Science 2010, 327:542-45. w window">CrossRef
    12. Grompe M: Tissue stem cells: new tools and functional diversity. / Cell Stem Cell 2012, 10:685-89. w window">CrossRef
    13. Chan RW, Gargett CE: Identification of label-retaining cells in mouse endometrium. / Stem Cells 2006, 24:1529-538. w window">CrossRef
    14. Kaitu'u-Lino TJ, Ye L, Salamonsen LA, Girling JE, Gargett CE: Identification of label-retaining perivascular cells in a mouse model of endometrial decidualization, breakdown, and repair. / Biol Reprod 2012, 86:184. w window">CrossRef
    15. Patterson AL, Pru JK: Long-term label retaining cells localize to distinct regions within the female reproductive epithelium. / Cell Cycle 2013, 12:2888-898. w window">CrossRef
    16. Seleverstov O, Zabirnyk O, Zscharnack M, Bulavina L, Nowicki M, Heinrich JM, Yezhelyev M, Emmrich F, O'Regan R, Bader A: Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. / Nano Lett 2006, 6:2826-832. w window">CrossRef
    17. Danner S, Benzin H, Vollbrandt T, Oder J, Richter A, Kruse C: Quantum dots do not alter the differentiation potential of pancreatic stem cells and are distributed randomly among daughter cells. / Int J Cell Biol 2013, 2013:918242. w window">CrossRef
    18. Noyes RW, Hertig AT, Rock J: Dating the endometrial biopsy. / Am J Obstet Gynecol 1975, 122:262-63.
    19. Chan RW, Schwab KE, Gargett CE: Clonogenicity of human endometrial epithelial and stromal cells. / Biol Reprod 2004, 70:1738-750. w window">CrossRef
    20. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A: Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. / Cell 2008, 132:487-98. w window">CrossRef
    21. Chan RW, Ng EH, Yeung WS: Identification of cells with colony-forming activity, self-renewal capacity, and multipotency in ovarian endometriosis. / Am J Pathol 2011, 178:2832-844. w window">CrossRef
    22. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(?delta delta C(T)) method. / Methods 2001, 25:402-08. w window">CrossRef
    23. Masuda H, Anwar SS, Buhring HJ, Rao JR, Gargett CE: A novel marker of human endometrial mesenchymal stem-like cells. / Cell Transplant 2012, 21:2201-214. w window">CrossRef
    24. Fafet P, Rebouissou C, Maudelonde T, Vignais ML: Opposite effects of transforming growth factor-beta activation and rho-associated kinase inhibition on human trophoblast migration in a reconstituted placental-endometrial coculture system. / Endocrinology 2008, 149:4475-485. w window">CrossRef
    25. Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP: Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. / Stem Cells Dev 2009, 18:1093-108. w window">CrossRef
    26. Lukacs RU, Memarzadeh S, Wu H, Witte ON: Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. / Cell Stem Cell 2010, 7:682-93. w window">CrossRef
    27. Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashima T, Kajitani T, Arase T, Oda H, Uchida H, Asada H, Ito M, Yoshimura Y, Maruyama T, Okano H: Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. / PLoS One 2010, 5:e10387. w window">CrossRef
    28. Cervelló I, Gil-Sanchis C, Mas A, Delgado-Rosas F, Martínez-Conejero JA, Galán A, Martínez-Romero A, Martínez S, Navarro I, Ferro J, Horcajadas JA, Esteban FJ, O'Connor JE, Pellicer A, Simon C: Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. / PLoS One 2010, 5:e10964. w window">CrossRef
    29. Lee GM, Fong SS, Oh DJ, Francis K, Palsson BO: Characterization and efficacy of PKH26 as a probe to study the replication history of the human hematopoietic KG1a progenitor cell line. / In Vitro Cell Dev Biol Anim 2002, 38:90-6. w window">CrossRef
    30. Dembinski JL, Krauss S: Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. / Clin Exp Metastasis 2009, 26:611-23. w window">CrossRef
    31. Reynolds BA, Rietze RL: Neural stem cells and neurospheres–re-evaluating the relationship. / Nat Methods 2005, 2:333-36. w window">CrossRef
    32. Orford KW, Scadden DT: Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. / Nat Rev Genet 2008, 9:115-28. w window">CrossRef
    33. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM: Transcriptional regulation of adipogenesis. / Genes Dev 2000, 14:1293-307.
    34. Rajaraman G, White J, Tan KS, Ulrich D, Rosamilia A, Werkmeister J, Gargett CE: Optimization and scale-up culture of human endometrial multipotent mesenchymal stromal cells: potential for clinical application. / Tissue Eng Part C Methods 2012, 19:80-2. w window">CrossRef
    35. Sivasubramaniyan K, Harichandan A, Schumann S, Sobiesiak M, Lengerke C, Maurer A, Kalbacher H, Buhring HJ: Prospective isolation of mesenchymal stem cells from human bone marrow using novel antibodies directed against Sushi domain containing 2. / Stem Cells Dev 2013, 22:1944-954. w window">CrossRef
    36. Liu CM, Yu CH, Chang CH, Hsu CC, Huang LL: Hyaluronan substratum holds mesenchymal stem cells in slow-cycling mode by prolonging G1 phase. / Cell Tissue Res 2008, 334:435-43. w window">CrossRef
    37. Simon C, G?tz M, Dimou L: Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. / Glia 2011, 59:869-81. w window">CrossRef
    38. Roccio M, Schmitter D, Knobloch M, Okawa Y, Sage D, Lutolf MP: Predicting stem cell fate changes by differential cell cycle progression patterns. / Development 2013, 140:459-70. w window">CrossRef
    39. Lange C, Calegari F: Cdks and cyclins link G1 length and differentiation of embryonic, neural and hematopoietic stem cells. / Cell Cycle 2010, 9:1893-900. w window">CrossRef
    40. Nygren JM, Bryder D, Jacobsen SE: Prolonged cell cycle transit is a defining and developmentally conserved hemopoietic stem cell property. / J Immunol 2006, 177:201-08. w window">CrossRef
    41. Salamonsen L, Shuster S, Stern R: Distribution of hyaluronan in human endometrium across the menstrual cycle. / Cell Tissue Res 2001, 306:335-40. w window">CrossRef
  • 作者单位:Lina Xiang (3)
    Rachel W S Chan (3) (4)
    Ernest H Y Ng (3) (4)
    William S B Yeung (3) (4)

    3. Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
    4. Centre of Reproduction, Development of Growth, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
  • ISSN:1757-6512
文摘
Introduction Evidence suggests that the human endometrium contains stem or progenitor cells that are responsible for its remarkable regenerative capability. A common property of somatic stem cells is their quiescent state. It remains unclear whether slow-cycling cells exist in the human endometrium. We hypothesized that the human endometrium contains a subset of slow-cycling cells with somatic stem cell properties. Here, we established an in vitro stem cell assay to isolate human endometrial-derived mesenchymal stem-like cells (eMSC). Methods Single-cell stromal cultures were initially labeled with fluorescent nanoparticles and a small population of fluorescent persistent cells (FPC) remained after culture of 21?days. Two populations of stromal cells, namely FPC and non-FPC were sorted. Results Quantitative analysis of functional assays demonstrated that the FPC had higher colony forming ability, underwent more rounds of self-renewal and had greater enrichment of phenotypically defined prospective eMSC markers: CD146+/CD140b+ and W5C5+ than the non-FPC. They also differentiate into multiple mesenchymal lineages and the expression of lineage specific markers was lower than that of non-FPC. The FPC exhibit low proliferation activities. A proliferation dynamics study revealed that more FPC had a prolonged G1 phase. Conclusions With this study we present an efficient method to label and isolate slow-proliferating cells obtained from human endometrial stromal cultures without genetic modifications. The FPC population could be easily maintained in vitro and are of interest for tissue-repair and engineering perspectives. In summary, nanoparticle labeling is a promising tool for the identification of putative somatic stem or progenitor cells when their surface markers are undefined.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700