Impact of the terrestrial-aquatic transition on disparity and rates of evolution in the carnivoran skull
详细信息    查看全文
  • 作者:Katrina E Jones (1) (5)
    Jeroen B Smaers (2)
    Anjali Goswami (3) (4)

    1. Center for Functional Anatomy and Evolution
    ; Johns Hopkins University ; Baltimore ; MD ; USA
    5. Department of Organismic and Evolutionary Biology
    ; Museum of Comparative Zoology ; Harvard University ; 26 Oxford Street ; Cambridge ; MA ; 02138 ; USA
    2. Department of Anthropology
    ; Stony Brook University ; Stony Brook ; New York ; NY ; 11794-4364 ; USA
    3. Department of Genetics
    ; Evolution & Environment ; University College London ; Gower Street ; London ; WC1E 6BT ; UK
    4. Department of Earth Sciences
    ; University College London ; Gower Street ; London ; WC1E 6BT ; UK
  • 关键词:Disparity ; Carnivora ; Fissiped ; Pinniped ; Cranial morphology ; Radiation ; Ecological transition ; Aquatic mammal
  • 刊名:BMC Evolutionary Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:15
  • 期:1
  • 全文大小:2,881 KB
  • 参考文献:1. Gould SJ. Tempo and mode in the macroevolutionary reconstruction of darwinism. Proc Natl Acad Sci U S A. 1994;91(15):6764鈥?1.
    2. Simpson GG. Tempo and Mode in Evolution. New York: Columbia University Press; 1944.
    3. Foote M. The evolution of morphological diversity. Annu Rev Ecol Syst. 1997;28:129鈥?2.
    4. Schluter D. The Ecology of Adaptive Radiation. Oxford: Oxfrod University Press; 2000.
    5. Losos JB. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am Nat. 2010;175(6):623鈥?9.
    6. Losos JB, Miles DB. Testing the hypothesis that a clade has adaptively radiated: Iguanid lizard clades as a case study. Am Nat. 2002;160(2):147鈥?7.
    7. Harmon LJ, Losos JB, Davies TJ, Gillespie RG, Gittleman JL, Jennings WB, et al. Early bursts of body size and shape evolution are rare in comparative data. Evolution. 2010;64(8):2385鈥?6.
    8. Schluter D. Introduction to the symposium: Species interactions and adaptive radiation. Am Nat. 2000;156:S1鈥?.
    9. Foote M. Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology. 1994;20(3):320鈥?4.
    10. Raia P, Carotenuto F, Passaro F, Piras P, Fulgione D, Werdelin L, et al. Rapid action in the Palaeogene, the relationship between phenotypic and taxonomic diversification in Coenozoic mammals. Proc R Soc Lond Ser B Biol Sci. 2013;280(1750):20122244.
    11. Meloro C, Raia P. Cats and dogs down the tree: the tempo and mode of evolution in the lower carnassial of fossil and living Carnivora. Evol Biol. 2010;37(4):177鈥?6.
    12. Harmon LJ, Schulte JA, Larson A, Losos JB. Tempo and mode of evolutionary radiation in iguanian lizards. Science. 2003;301(5635):961鈥?.
    13. Mahler DL, Revell LJ, Glor RE, Losos JB. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution. 2010;64(9):2731鈥?5.
    14. Gillespie R. Community assembly through adaptive radiation in Hawaiian spiders. Science. 2004;303(5656):356鈥?.
    15. Givnish TJ. Adaptive radiation, dispersal, and diversification of the Hawaiian lobeliads. In: Kato M, editor. The Biology of Biodiversity. Tokyo: Springer-Verlag; 1999. p. 67鈥?0.
    16. Burbrink FT, Pyron RA. How does ecological opportunity influence rates of speciation, extinction, and morphological diversification in New World ratsnakes (tribe Lampropeltini)? Evolution. 2010;64(4):934鈥?3.
    17. Sidlauskas B. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution. 2008;62(12):3135鈥?6.
    18. Grant BR, Grant PR. How and Why Species Multiply: The Radiation of Darwin's Finches. Princeton: Princeton University Press; 2008.
    19. Grant PR, Grant BR. Evolution of character displacement in Darwin's finches. Science. 2006;313(5784):224鈥?.
    20. Schluter D. Character displacement and the adaptive divergence of finches on islands and continents. Am Nat. 1988;131(6):799鈥?24.
    21. Baldwin BG, Sanderson MJ. Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci U S A. 1998;95(16):9402鈥?.
    22. Seehausen O. African cichlid fish: a model system in adaptive radiation research. Proc R Soc Lond Ser B Biol Sci. 2006;273(1597):1987鈥?8.
    23. Kocher TD. Adaptive evolution and explosive speciation: The cichlid fish model. Nat Rev Genet. 2004;5(4):288鈥?8.
    24. Slater GJ, Price SA, Santini F, Alfaro ME. Diversity versus disparity and the radiation of modern cetaceans. Proc R Soc Lond Ser B Biol Sci. 2010;277(1697):3097鈥?04.
    25. Marcus LF, Hingst-Zaher E, Zaher H. Application of landmark morphometrics to skulls representing the orders of living mammals. Hystrix. 2000;11(1):27鈥?7.
    26. Wesley-Hunt GD. The morphological diversification of carnivores in North America. Paleobiology. 2005;31(1):35鈥?5.
    27. Valkenburgh BV, Ruff CB. Canine tooth strength and killing behaviour in large carnivores. J Zool. 1987;212(3):379鈥?7.
    28. Radinsky LB. Evolution of skull shape in carnivores 1: Representative modern carnivores. Biol J Linn Soc. 1981;15(4):369鈥?8.
    29. Meloro C, Raia P, Piras P, Barbera C, O'Higgins P. The shape of the mandibular corpus in large fissiped carnivores: allometry, function and phylogeny. Zool J Linn Soc. 2008;154:832.
    30. Goswami A, Polly PD. The influence of modularity on cranial morphological disparity in Carnivora and Primates (Mammalia). PLoS ONE. 2010;5(3):e9517.
    31. Jones KE, Goswami A. Morphometric analysis of cranial shape in pinnipeds (Mammalia, Carnivora): convergence, ecology, ontogeny, and dimorphism. In: Goswami A, Friscia A, editors. Carnivoran Evolution: new Views on Phylogeny, Form, and Function. Cambridge: Cambridge University Press; 2010. p. 342鈥?3.
    32. Polly PD. Adaptive zones and the pinniped ankle: a three-dimensional quantitative analysis of carnivoran tarsal evolution. In: Sargis EJ, Dagosto M, editors. Mammalian Evolutionary Morphology. Netherlands: Springer; 2008. p. 167鈥?6.
    33. Goswami A, Milne N, Wroe S. Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals. Proc R Soc Lond Ser B Biol Sci. 2011;278(1713):1831鈥?.
    34. Repenning CA. Adaptive evolution of sea lions and walruses. Syst Biol. 1976;25:375鈥?0.
    35. Eizirik E, Murphy WJ, Koepfli KP, Johnson WE, Dragoo JW, Wayne RK, et al. Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Mol Phylogen Evol. 2010;56(1):49鈥?3.
    36. Flynn JJ, Finarelli JA, Zehr S, Hsu J, Nedbal MA. Molecular phylogeny of the Carnivora (Mammalia): Assessing the impact of increased sampling on resolving enigmatic relationships. Syst Biol. 2005;54(2):317鈥?7.
    37. Agnarsson I, Kuntner M, May-Collado LJ. Dogs, cats, and kin: A molecular species-level phylogeny of Carnivora. Mol Phylogen Evol. 2010;54(3):726鈥?5.
    38. Monteiro ELD, Monteiro LR, dos Reis SF. Skull shape and size divergence in dolphins of the genus Sotalia: A tridimensional morphometric analysis. J Mammal. 2002;83(1):125鈥?4.
    39. Slater GJ, Harmon LJ, Wegmann D, Joyce P, Revell LJ, Alfaro ME. Fitting models of continuous trait evolution to incompletely sampled comparative data using approximate bayesian computation. Evolution. 2012;66(3):752鈥?2.
    40. Nyakatura K, Bininda-Emonds ORP. Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biol. 2012;10:12.
    41. Dem茅r茅 TA, Berta A, Adam PJ. Pinnipedimorph evolutionary biogeography. Bull Am Mus Nat Hist. 2003;279:32.
    42. Koretsky IA, Sanders AE. Paleontology of the Late Oligocene Ashley and Chandler Bridge Formations of South Carolina, 1:Paleogene pinniped remains; the oldest known seal ( / Carnivora: Phocidae). In: Cenozoic Mammals of the Land and Sea: Tributes to the Career of Clayton E Ray. Smithsonian: Cont Paleo; 2002. p. 179鈥?3.
    43. Arnason U, Gullberg A, Janke A, Kullberg M, Lehman N, Petrov EA, et al. Pinniped phylogeny and a new hypothesis for their origin and dispersal. Mol Phylogen Evol. 2006;41:345鈥?4.
    44. Berta A, Sumich J, Kovaks K. Marine Mammals Evolutionary Biology. San Diego: Academic Press; 2006.
    45. Berta A, Wyss AR. Pinniped phylogeny. In: Contributions in marine mammal paleontology honoring Frank C Whitmore, Jr. Proceedings of the San Diego Society of Natural History. 1994;29:33鈥?6.
    46. Wilson DE, Reeder DM. Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd ed. Baltimore: Johns Hopkins University Press; 2005.
    47. Luan P, Ryder OA, Davis H, Zhang Y, Yu L. Incorporating indels as phylogenetic characters: Impact for interfamilial relationships within Arctoidea (Mammalia: Carnivora). Mol Phylogen Evol. 2012;66(3):748鈥?6.
    48. Tedford RH. Relationship of pinnipeds to other carnivores (Mammalia). Syst Zool. 1976;25(4):363鈥?4.
    49. Mclaren IA. Are the Pinnipedia biphyletic? Syst Zool. 1960;9(1):18鈥?8.
    50. Wyss AR. Evidence from flipper structure for a single origin of pinnipeds. Nature. 1988;334:427.
    51. Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401(6756):877鈥?4.
    52. Hansen TF. Stabilizing selection and the comparative analysis of adaptation. Evolution. 1997;51(5):1341鈥?1.
    53. Hansen TF. Adaptive landscapes and macroevolutionary dynamics. In: Svensson E, Calsbeek R, editors. The Adaptive Landscape in Evolutionary Biology. Oxford, UK: Oxford University Press; 2012. p. 205鈥?6.
    54. Butler MA, King AA. Phylogenetic comparative analysis: A modeling approach for adaptive evolution. Am Nat. 2004;164(6):683鈥?5.
    55. Butler MA, King AA. Multivariate comparative analysis using OUCH. Integr Comp Biol. 2009;49:E24鈥?.
    56. Uyeda JF, Harmon LJ. A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Syst Biol. 2014;63(6):902鈥?8.
    57. Uyeda JF, Eastman J, Harmon LJ. bayou: Bayesian fitting of Ornstein-Uhlenbeck models to phylogenies. R package version 1.0.1. 2014. http://CRAN.R-project.org/package=bayou.
    58. Smaers JB, Vinicius L. Inferring macro-evolutionary patterns using an adaptive peak model of evolution. Evol Ecol Res. 2009;11(7):991鈥?015.
    59. Smaers JB, Dechmann DKN, Goswami A, Soligo C, Safi K. Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates. Proc Natl Acad Sci U S A. 2012;109(44):18006鈥?1.
    60. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat. 1972;106(951):645.
    61. Farris JS, Farris JS. Methods for computing Wagner trees. Syst Zool. 1970;19(1):83.
    62. Goswami A, Smaers JB, Soligo C, Polly PD. The macroevolutionary consequences of phenotypic integration: from development to deep time. Philos Trans R Soc Lond, Ser B: Biol Sci. 2014;369(1649):20130254.
    63. Slater GJ. Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary. Methods Ecol Evol. 2013;4(8):734鈥?4.
    64. Demere TA, Berta A. The Miocene pinniped / Desmatophoca oregonensis condon, 1906 (Mammalia: Carnivora), from the Astoria Formation, Oregon. Smithson Contrib Paleobiol. 2002;93:113鈥?7.
    65. Repenning CA, Tedford RH. Otarioid seals of the Neogene. US Geol Survey Prof Pap. 1977;992:1鈥?3.
    66. Barnes LG, Kiyoharu H. Miocene pinnipeds of the otariid subfamily / Allodesminae in the north pacific ocean: systematics and relationships. Island Arc. 1994;3:329鈥?0.
    67. Kohno N. A new Miocene odobenid (Mammalia : Carnivora) from Hokkaido, Japan, and its implications for odobenid phylogeny. J Vert Paleontol. 2006;26(2):411鈥?1.
    68. Demere TA. The family Odobenidae:a phylogenetic analysis of fossil and living taxa. Proc San Diego Soc Nat Hist. 1994;29:99鈥?23.
    69. Walsh S, Naish D. Fossil seals from Late Neogene deposits in South America: A new pinniped (Carnivora, Mammalia) assemblage from Chile. Palaeontology. 2002;45:821鈥?2.
    70. Berta A, Kienle S, Bianucci G, Sorbi S: A re-evaluation of Pliophoca etrusca (Pinnipedia, Phocidae) from the Pliocene of Italy: phylogenetic and biogeographic implications. J Vert Paleontol 2014. in press.
    71. Goswami A. Cranial modularity shifts during mammalian evolution. Am Nat. 2006;168(2):270鈥?0.
    72. Goswami A. Morphological integration in the carnivoran skull. Evolution. 2006;60(1):169鈥?3.
    73. Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Res. 2011;11(2):353鈥?.
    74. Drake AG, Klingenberg CP. Large-scale diversification of skull shape in domestic dogs: Disparity and modularity. Am Nat. 2010;175(3):289鈥?01.
    75. Ciampaglio CN, Kemp M, McShea DW. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology. 2001;27(4):695鈥?15.
    76. Navarro N. MDA: a MATLAB-based program for morphospace-disparity analysis. Comput Geosci. 2003;29(5):655鈥?4.
    77. Navarro N. MDA: Morphospace-disparity analysis for Matlab. 12th ed. Dijon: Biogeosciences; 2001.
    78. Butler MA, King AA. ouch: Ornstein-Uhlenbeck models for phylogenetic comparative hypotheses. R package. 2009. http://ouch.r-forge.r-project.org.
    79. Smaers JB: evomap: R package for the evolutionary mapping of continuous traits. In / .: https://github.com/JeroenSmaers/evomap; 2014.
    80. Van Valkenburgh B. Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology. 1985;11(4):406鈥?8.
    81. Van Valkenburgh B. Deja vu: the evolution of feeding morphologies in the Carnivora. Integr Comp Biol. 2007;47(1):147鈥?3.
    82. Christiansen P, Wroe S. Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology. 2007;88(2):347鈥?8.
    83. Berta A. New / Enaliarctos (Pinnipedimorpha) from the Oligocene and Miocene of Oregon and the Role of "Enaliarctids" in Pinniped Phylogeny. Washington D.C: Smithsonian Inst. Press; 1991.
    84. Hunt RM, Barnes LG. Basicranial evidence for ursid affinities of the oldest pinnipeds. In: Berta A, Demere T, editors. Marine Mammal Paleontology Honoring Frank C Whitmore, Jr. San Diego: Proceedings of the San Diego Museum of Natural History; 1994. p. 268.
    85. Bebej RM. Swimming mode inferred from skeletal proportions in the fossil pinnipeds / Enaliarctos and / Allodesmus (Mammalia, Carnivora). J Mamm Evol. 2009;16(2):77鈥?7.
    86. Sears KE, Goswami A, Flynn JJ, Niswander LA. The correlated evolution of Runx2 tandem repeats, transcriptional activity, and facial length in Carnivora. Evol Dev. 2007;9(6):555鈥?5.
    87. Adam PJ, Berta A. Evolution of prey capture strategies and diet in the Pinnipedimorpha (Mammalia, Carnivora). Oryctos. 2002;4:83鈥?07.
    88. Wagner CE, Harmon LJ, Seehausen O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature. 2012;487(7407):366鈥揢124.
    89. Crusafont-Pairo M, Truyols-Santonja J. A biometric study of evolution of fissiped carnivores. Evolution. 1956;10:314鈥?2.
    90. Werdelin L. Carnivoran ecomorphology: A phylogenetic perspective. In: Gittleman JL, editor. Carnivore Behavior, Ecology and Evolution, vol. 1. Ithica, NY: Cornell University Press; 1996. p. 582鈥?24.
    91. Ferguson SH. How seals divide up the world: environment, life history, and conservation. Oecologia. 2006;150:318.
    92. Hylander WL, Picq PG, Johnson KR. Masticatory-stress hypotheses and the supraorbital region of primates. Amer J Phys Anthrop. 1991;86(1):1鈥?6.
    93. Smith M, Savage RJ. The mechanics of mammalian jaws. School Sci Rev. 1959;141:289鈥?01.
    94. Ross CF, Patel BA, Slice DE, Strait DS, Dechow PC, Richmond BG, et al. Modeling masticatory muscle force in finite element analysis: Sensitivity analysis using principal coordinates analysis. Anat Rec. 2005;283A(2):288鈥?9.
    95. Vinyard CJ, Wall CE, Williams SH, Hylander WL. Comparative functional analysis of skull morphology of tree-gouging primates. Amer J Phys Anthrop. 2003;120(2):153鈥?0.
    96. Kupczik K, Dobson CA, Crompton RH, Phillips R, Oxnard CE, Fagan MJ, et al. Masticatory loading and bone adaptation in the supraorbital torus of developing macaques. Amer J Phys Anthrop. 2009;139(2):193鈥?03.
    97. Berta A, Adam PJ. Evolutionary Biology of Pinnipeds. In: de Buffrenil V, Mazin J-M, editors. Secondary adaptation of tetrapods to a life in water. Munchen Germany: Verlag Dr Frederich Pfeil; 2001. p. 235鈥?0.
    98. Boessenecker RW. New records of the fur seal Callorhinus (Carnivora: Otariidae) from the Plio-Pleistocene Rio Dell Formation of Northern California and comments on otariid dental evolution. J Vert Paleontol. 2011;31(2):454鈥?7.
    99. Jones KE, Ruff CB, Goswami A. Morphology and biomechanics of the pinniped jaw: mandibular evolution without mastication. Anat Rec. 2013;296(7):1049鈥?3.
    100. Miller EH, Sung HC, Moulton VD, Miller GW, Finley JK, Stenson GB. Variation and integration of the simple mandibular postcanine dentition in two species of phocid seal. J Mammal. 2007;88(5):1325鈥?4.
    101. Salazar-Ciudad I, Jernvall J. A computational model of teeth and the developmental origins of morphological variation. Nature. 2010;464(7288):583鈥揢138.
    102. Tseng ZJ, Wang XM. Cranial functional morphology of fossil dogs and adaptation for durophagy in borophagus and epicyon (carnivora, Mammalia). J Morphol. 2010;271(11):1386鈥?8.
    103. Sacco T, Van Valkenburgh B. Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae). J Zool. 2004;263:41鈥?4.
    104. Slater GJ, Dumont ER, Van Valkenburgh B. Implications of predatory specialization for cranial form and function in canids. J Zool. 2009;278(3):181鈥?.
    105. Wroe S. Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proc R Soc Lond Ser B Biol Sci. 2005;272:619.
    106. Tseng ZJ, Binder WJ. Mandibular biomechanics of Crocuta crocuta, Canis lupus, and the late Miocene Dinocrocuta gigantea (Carnivora, Mammalia). Zool J Linn Soc. 2009;158(2):638鈥?6.
    107. Finarelli JA, Goswami A. The evolution of orbit orientation and encephalization in the Carnivora (Mammalia). J Anat. 2009;214(5):671鈥?.
    108. Van Valkenburgh B, Friscia A, Theodor J: Respiratory turbinals in felids and canids: a quantitative comparison. J Zool 2004, 264(3).
    109. Jones KE, Goswami A. Quantitative analysis of the influences of phylogeny and ecology on phocid and otariid pinniped (Mammalia; Carnivora) cranial morphology. J Zool. 2010;280(3):297鈥?08.
    110. Kastelein RA. Oral suction of a Pacific walrus ( / Odobenus rosmarus divergens) in air and under water. Mamm Biol. 1994;59:105.
    111. Marshall CD. Feeding kinematics, suction and hydraulic jetting capabilities in bearded seals ( / Erignathus barbatus). J Exp Biol. 2008;211:699.
    112. King JE. The feeding mechanism and jaws of the crabeater seal ( / Lobodon carcinophagus). Annls Mus Hist nat Paris. 1961;25(4):462鈥?.
    113. Van Valkenburgh B, Curtis A, Samuels JX, Bird D, Fulkerson B, Meachen-Samuels J, et al. Aquatic adaptations in the nose of carnivorans: evidence from the turbinates. J Anat. 2011;218(3):298鈥?10.
    114. Mellish JAE, Horning M, York AE. Seasonal and spatial blubber depth changes in captive harbor seals ( / Phoca vitulina) and Steller's sea lions ( / Eumetopias jubatus). J Mammal. 2007;88(2):408鈥?4.
    115. Kastelein RA, Zweypfenning CVJ, Spekreijse H, Dubbeldam JL, Born EW. The Anatomy of the walrus head ( / Odobenus rosmarus). Part 3: The eyes and their function in Walrus ecology. Aquat Mamm. 1993;19(2):61鈥?.
    116. Hunt RM. Auditory bulla in Carnivora: Anatomical basis for reappraisal of carnivore evolution. J Morphol. 1974;143(1):21鈥?5.
    117. Nummela S, Thewissen JGM. Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates. Berkeley: University of California Press; 2008.
    118. Kastak D, Schusterman RJ. Low-frequency amphibious hearing in pinnipeds: Methods, measurements, noise, and ecology. J Acoust Soc Am. 1998;103(4):2216鈥?8.
    119. Kastak D, Schusterman RJ. In-air and underwater hearing sensitivity of a northern elephant seal ( / Mirounga angustirostris). Can J Zool. 1999;77(11):1751鈥?.
    120. Berg L, Pyenson N. Osteological correlates and phylogenetic analysis of deep diving in living and extinct pinnipeds: what good are big eyeballs? J Vert Paleontol. 2008;28:51A.
    121. Stenfors LE, Sade J, Hellstrom S, Anniko M. How can the hooded seal dive to a depth of 1000 m without rupturing its tympanic membrane? A morphological and functional study. Acta Oto-Laryngol. 2001;121(6):689鈥?5.
    122. Sanvito S, Galimberti F, Miller EH. Having a big nose: Structure, ontogeny, and function of the elephant seal proboscis. Can J Zool. 2007;85(2):207鈥?0.
    123. Bartholomew GA. A model for evolution of pinniped polygyny. Evolution. 1970;24(3):546.
  • 刊物主题:Evolutionary Biology; Animal Systematics/Taxonomy/Biogeography; Entomology; Genetics and Population Dynamics; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2148
文摘
Background Which factors influence the distribution patterns of morphological diversity among clades? The adaptive radiation model predicts that a clade entering new ecological niche will experience high rates of evolution early in its history, followed by a gradual slowing. Here we measure disparity and rates of evolution in Carnivora, specifically focusing on the terrestrial-aquatic transition in Pinnipedia. We analyze fissiped (mostly terrestrial, arboreal, and semi-arboreal, but also including the semi-aquatic otter) and pinniped (secondarily aquatic) carnivorans as a case study of an extreme ecological transition. We used 3D geometric morphometrics to quantify cranial shape in 151 carnivoran specimens (64 fissiped, 87 pinniped) and five exceptionally-preserved fossil pinnipeds, including the stem-pinniped Enaliarctos emlongi. Range-based and variance-based disparity measures were compared between pinnipeds and fissipeds. To distinguish between evolutionary modes, a Brownian motion model was compared to selective regime shifts associated with the terrestrial-aquatic transition and at the base of Pinnipedia. Further, evolutionary patterns were estimated on individual branches using both Ornstein-Uhlenbeck and Independent Evolution models, to examine the origin of pinniped diversity. Results Pinnipeds exhibit greater cranial disparity than fissipeds, even though they are less taxonomically diverse and, as a clade nested within fissipeds, phylogenetically younger. Despite this, there is no increase in the rate of morphological evolution at the base of Pinnipedia, as would be predicted by an adaptive radiation model, and a Brownian motion model of evolution is supported. Instead basal pinnipeds populated new areas of morphospace via low to moderate rates of evolution in new directions, followed by later bursts within the crown-group, potentially associated with ecological diversification within the marine realm. Conclusion The transition to an aquatic habitat in carnivorans resulted in a shift in cranial morphology without an increase in rate in the stem lineage, contra to the adaptive radiation model. Instead these data suggest a release from evolutionary constraint model, followed by aquatic diversifications within crown families.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700