Determining Soil Thermal Conductivity Through Numerical Simulation of a Heating Test on a Heat Exchanger Pile
详细信息    查看全文
  • 作者:K. L. Yu (1)
    R. M. Singh (2)
    A. Bouazza (1)
    H. H. Bui (1)

    1. Monash University
    ; Melbourne ; Victoria ; 3800 ; Australia
    2. University of Surrey
    ; Guildford ; GU2 7XH ; UK
  • 关键词:Heat exchanger pile ; Heat absorber pipes ; Heat transfer ; Thermal conductivity ; Thermal response test
  • 刊名:Geotechnical and Geological Engineering
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:33
  • 期:2
  • 页码:239-252
  • 全文大小:1,543 KB
  • 参考文献:1. Austin WA (1998) Development of an in situ system for measuring ground thermal properties. MS thesis, Oklahoma State University, Stillwater, Oklahoma
    2. Bandos, TV, Montero, A, de Cordoba, PF, Urchueguia, JF (2011) Improving parameter estimates obtained from thermal response tests: effect of ambient air temperature variations. Geothermics 40: pp. 136-143 CrossRef
    3. Barry-Macaulay D (2013) An investigation on the thermal and thermo-mechanical behaviour of soils. MEngSc thesis, Monash University, Melbourne, Australia
    4. Barry-Macaulay, D, Bouazza, A, Singh, RM, Wang, B, Ranjith, PG (2013) Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Eng Geol 164: pp. 131-138 CrossRef
    5. Boranyak S (2013) International cooperation expands energy foundation technology. Deep Foundations Magazine, March/April edition, 51鈥?5
    6. Bouazza, A, Singh, RM, Wang, B, Barry-Macaulay, D, Haberfield, C, Chapman, G, Baycan, S, Carden, Y (2011) Harnessing on site renewable energy through pile foundations. Aust Geomech J 46: pp. 79-89
    7. Bourne-Webb, PJ, Amatya, B, Soga, K, Amis, T, Davidson, C, Payne, P (2009) Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Geotechnique 59: pp. 237-248 CrossRef
    8. Brandl, H (2006) Energy foundations and other thermo-active ground structures. Geotechnique 56: pp. 81-122 CrossRef
    9. Brettmann T, Amis T, Kapps M (2010) Thermal conductivity analysis of geothermal energy piles. In: Proceedings of the geotechnical challenges in urban regeneration conference, London, UK, pp 26鈥?8
    10. Bristow, KL, White, RD, Kluitenberg, GJ (1994) Comparison of single and dual probes for measuring soil thermal properties with transient heating. Aust J Soil Res 32: pp. 447-464 CrossRef
    11. Chandler, KR (1992) Brighton Group鈥攅ngineering properties. Eng Geol Melb 1992: pp. 197-203
    12. Colls, S, Johnston, I, Narsillo, G (2012) Experimental study of ground energy systems in Melbourne, Australia. Aust Geomech 47: pp. 15-20
    Multiphysics reference guide. Stockholm, Sweden
    13. DeMoel, M, Bach, PM, Bouazza, A, Singh, RM, Sun, JO (2010) Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia. Renew Sustain Energy Rev 14: pp. 2683-2696 CrossRef
    14. Gao, J, Zhang, X, Liu, J, Li, K, Yang, J (2008) Numerical and experimental assessment of thermal performance of vertical energy piles: an application. Appl Energy 85: pp. 901-910 CrossRef
    15. Gehlin, S, Nordell, B (2003) Determining undisturbed ground temperature for thermal response test. Am Soc Heat Refrig Am Eng Trans 107: pp. 151-156
    16. Geological Survey of Victoria (1981) Ringwood Geological Map. No. 809 Zone 7
    17. Hamada, Y, Saitoh, H, Nakamura, M, Kubota, H, Ochifuji, K (2007) Field performance of an energy pile system for space heating. Energy Build 39: pp. 517-524 CrossRef
    18. Incropera, F, DeWitt, D (2002) Introduction to heat transfer. Wiley, New York
    19. INEOS Olefins and Polymers USA (2009) Typical engineering properties of high density polyethylene. Technical data sheet. http://www.ineos.com/Global/Olefins%20and%20Polymers%20USA/Products/Technical%20information/INEOS%20Typical%20Engineering%20Properties%20of%20HDPE.pdf
    20. Johnston, IW, Narsillo, GA, Colls, S (2011) Emerging geothermal energy technologies. KSCE J Civil Eng 15: pp. 643-653 CrossRef
    21. Kavanaugh SP, Xie L, Martin C (2001) Investigation of methods for determining soil and rock formation thermal properties from short-term field tests, ASHRAE 1118-TRP. American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc
    22. Laloui L, Di Donna A (2011) Understanding the behaviour of energy geo-structures. In: Proceedings of ICE 184鈥?91
    23. Laloui, L, Nuth, M, Vulliet, L (2006) Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int J Numer Anal Methods Geomech 30: pp. 763-781 CrossRef
    24. Loveridge F, Brettmann T, Olgun CG, William P (2014) Assessing the applicability of thermal response testing to energy piles. In: Proceedings global perspectives on the sustainable execution of foundation works, Stockholm, Sweden, 21鈥?3 May 2014
    25. Pahud D, Hubbuch M (2007) Measured thermal performances of the energy pile system of the Dock Midfield at Zurich Airport. In: Proceedings European geothermal congress. Unterhaching, Germany
    26. Philippe, M, Bernier, M, Marchio, D (2009) Validity ranges of three analytical solutions to heat transfer in the vicinity of single boreholes. Geothermics 38: pp. 407-413 CrossRef
    27. Quick H, Michael J, Huber H, Arslan U (2010) History of international geothermal power plants and geothermal projects in Germany. In: Proceedings world geothermal congress. Bali, Indonesia
    28. Wang B (2013) Thermo-mechanical behaviour of geothermal energy piles. MEngSc, Monash University, Melbourne, Australia
    29. Wang B, Bouazza A, Macaulay DB, Singh RM, Haberfield C, Chapman G, Baycan S (2012) Geothermal energy pile subjected to thermo-mechanical loading. In: Proceedings ANZ geomechanics regional conference, pp 626鈥?31
    30. Wang B, Bouazza A, Singh RM, Barry-Macaulay D, Haberfield C, Chapman G, Baycan S (2013) Field investigation of a geothermal energy pile: initial observations, In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering. Paris, France, pp 3415鈥?418
    31. Wang B, Bouazza A, Singh M, Haberfield C, Barry-Macaulay D, Baycan S (2014) Post-temperature effects on shaft capacity of a full scale geothermal energy pile. J Geotech Geoenviron Eng. doi:10.1061/(ASCE)GT.1943-5606.0001266
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Hydrogeology
    Terrestrial Pollution
    Waste Management and Waste Technology
    Civil Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-1529
文摘
Heat exchanger pile foundations have a great potential of providing space heating and cooling to built structures. This technology is a variant of vertical borehole heat exchangers. A heat exchanger pile has heat absorber pipes firmly attached to its reinforcement cage. Heat carrier fluid circulates inside the pipes to transfer heat energy between the piles and the surrounding ground. Borehole heat exchangers technology is well established but the heat exchanger pile technology is relatively new and requires further investigation of its heat transfer process. The heat transfer process that affects the thermal performance of a heat exchanger pile system is highly dependent on the thermal conductivity of the surrounding ground. This paper presents a numerical prediction of a thermal conductivity ground profile based on a field heating test conducted on a heat exchanger pile. The thermal conductivity determined from the numerical simulation was compared with the ones evaluated from field and laboratory experiments. It was found that the thermal conductivity quantified numerically was in close agreement with the laboratory test results, whereas it differed from the field experimental value.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700