Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation
详细信息    查看全文
  • 作者:Aníbal Pauchard ; Ann Milbau ; Ann Albihn ; Jake Alexander…
  • 关键词:Alien species ; Arctic ; Exotic species ; Biosecurity ; Migration ; Range expansion ; Risk ; Sub ; polar
  • 刊名:Biological Invasions
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:18
  • 期:2
  • 页码:345-353
  • 全文大小:803 KB
  • 参考文献:Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, Consortium M (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci USA 108:656–661CrossRef PubMedCentral PubMed
    Alexander JM, Diez JM, Levine JM (2015) Novel competitors shape species’ responses to climate change. Nature 525:515–518. doi:10.​1038/​nature14952
    Alsos I, Ware C, Elven R (2015) Past Arctic aliens have passed away, current ones may stay. Biol Invasions 17:3113–3123
    Bennett JR, Shaw JD, Terauds A, Smol JP, Aerts R, Bergstrom DM, Blais JM, Cheung WWL, Chown SL, Lea M-A, Nielsen UN, Pauly D, Reimer KJ, Riddle MJ, Snape I, Stark JS, Tulloch VJ, Possingham HP (2015) Polar lessons learned: long-term management based on shared threats in Arctic and Antarctic environments. Front Ecol Environ 13:316–324CrossRef
    Bertelsmeier C, Guénard B, Courchamp F (2013) Climate change may boost the invasion of the Asian Needle Ant. PLoS One 8(10):e75438CrossRef PubMedCentral PubMed
    Bertelsmeier C, Luque GM, Hoffmann BD, Courchamp F (2015) Worldwide ant invasions under climate change. Biodivers Conserv 24:117–128CrossRef
    Bertrand R, Lenoir J, Piedallu C, Riofrio-Dillon G, de Ruffray P, Vidal C, Pierrat J-C, Gegout J-C (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–520CrossRef PubMed
    Cahill DM, Rookes JE, Wilson BA, Gibson L, McDougall KL (2008) Phytophthora cinnamomi and Australia’s biodiversity: impacts predictions and progress towards control. Turner Review No. 17. Aust J Bot 56:279–310CrossRef
    Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CrossRef PubMed
    Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641CrossRef
    Crawford RMM (2014) Tundra-taiga biology: human, plant, and animal survival in the arctic. Oxford University Press, Oxford
    Duque A, Stevenson PR, Feeley KJ (2015) Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc Natl Acad Sci 112:10744–10749CrossRef PubMed
    Essl F, Steinbauer K, Dullinger S, Mang T, Moser D (2013) Telling a different story: a global assessment of bryophyte invasions. Biol Invasions 15:1933–1946CrossRef
    Essl F, Steinbauer K, Dullinger S, Mang T, Moser D (2014) Little, but increasing evidence of impacts of alien bryophytes. Biol Invasions 16:1175–1184CrossRef
    Evengard B, McMichael A (2011) Vulnerable populations in the Arctic. Glob Health Action 4:3–5PubMed
    Fausch KD, Rieman BE, Dunham JB, Young MK, Peterson DP (2009) Invasion versus isolation: Trade-offs in managing native salmonids with barriers to upstream movement. Conserv Biol 23:859–870
    Fisher MC, Garner TW, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310CrossRef PubMed
    Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barancok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernandez Calzado MR, Kazakis G, Krajci J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat J-P, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change 2:111–115CrossRef
    Hein CL, Öhlund G, Englund G (2014) Fish introductions reveal the temperature dependence of species interactions. Proc R Soc Ser B 281:1471–2954
    Hughes KA, Pertierra LR, Molina-Montenegro MA, Convey P (2015) Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodivers Conserv 24:1031–1055CrossRef
    IUCN/SSC (2013). Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0. Gland, Switzerland: IUCN Species Survival Commission, viiii + 57 pp
    Jaenson TGT, Lindgren E (2011) The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer. Ticks Tickborne Dis 2(1):44–49CrossRef
    Knapp RA, Briggs CJ, Smith TC, Maurer JR (2011) Nowhere to hide: impact of a temperature-sensitive amphibian pathogen along an elevation gradient in the temperate zone. Ecosphere 2:art93
    Kruckenhauser L, Pinsker W (2008) Microsatellite variation in autochthonous and introduced populations of the Alpine marmot (Marmota marmota) along a European west–east transect. J Zool Syst Evol Res 42:19–26CrossRef
    Kueffer C (2015) Mountain biomes. Oxf Bibliogr Ecol. doi:10.​1093/​obo/​9780199830060-0119
    Kueffer C, McDougall K, Alexander J, Daehler C, Edwards PJ, Haider S, Milbau A, Parks C, Pauchard A, Reshi ZA, Rew L, Schroder M, Seipel T (2013) Plant invasions into mountain protected areas: assessment, prevention and control at multiple spatial scales. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas: patterns, problems and challenges. Springer, Dordrecht, pp 89–113CrossRef
    Kueffer C, Daehler C, Dietz H, McDougall K, Parks C, Pauchard A, Rew L (2014) The Mountain Invasion Research Network (MIREN). Linking local and global scales for addressing an ecological consequence of global change. GAIA 23:263–265CrossRef
    Lenoir J, Svenning JC (2013) Latitudinal and elevational range shifts under contemporary climate change. Encycl Biodivers 4:599–611
    Lenoir J, Svenning JC (2015) Climate-related range shifts—towards a comprehensive research framework. Ecography 38:15–28CrossRef
    Lenoir J, Gégout JC, Guisan A, Vittoz P, Wohlgemuth T, Zimmermann NE, Dulinger S, Pauli H, Willner W, Svenning JC (2010) Going against the flow: potential mechanisms for the unexpected downward range shifts of some mountain plant species despite a warming climate. Ecography 33:295–303
    Lenoir J, Virtanen R, Oksanen J, Oksanen L, Luoto M, Grytnes JA, Svenning JC (2012) Dispersal ability links to cross-scale species diversity patterns across the Eurasian Arctic tundra. Glob Ecol Biogeogr 21:851–860CrossRef
    Pilliod DS, Muths E, Scherer RD, Bartelt PE, Corn PS, Hossack BR, Lambert BA, McCaffery R, Gaughan C (2010) Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads. Conserv Biol 24:1259–1267CrossRef PubMed
    McDougall KL, Khuroo AA, Loope LL, Parks CG, Pauchard A, Reshi ZA, Rushworth I, Kueffer C (2011) Plant invasions in mountains: global lessons for better management. Mt Res Dev 31:380–387CrossRef
    Montgomery RR, Murray KO (2015) Risk factors for West Nile virus infection and disease in populations and individuals. Expert Rev Anti Infect Ther 13:317–325CrossRef PubMed
    Muths E, Pilliod DS, Livo LJ (2008) Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA. Biol Conserv 141:1484–1492CrossRef
    Nuñez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359CrossRef PubMed
    Nuñez MA, Hayward J, Horton TR, Amico GC, Dimarco RD, Barrios-Garcia MN, Simberloff D (2013) Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS One 8:e66832CrossRef PubMedCentral PubMed
    Palmer MV, Stoffregen WC, Rogers DG, Hamir AN, Richt JA, Pedersen DD, Waters WR (2004) West Nile virus infection in reindeer (Rangifer tarandus). J Vet Diagn Invest 16(3):219–222CrossRef PubMed
    Parkinson A, Koch A, Evengård B (2015) Infectious Disease in the Arctic: A Panorama in Transition. In: Evengård B, Nymand Larsen J, Paasche Ø (eds) The New Arctic. Springer International Publishing, Berlin, pp 239–257
    Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486CrossRef
    Pellissier L, Fiedler K, Ndribe C, Dubuis A, Pradervand JN, Guisan A, Rasmann S (2012) Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evolut 2:1818–1825CrossRef
    Pellissier L, Roger A, Bilat J, Rasmann S (2014) High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: is it just temperature? Ecography 37:950–959CrossRef
    Petitpierre B, MacDougall K, Seipel T, Broennimann O, Guisan A, Kueffer C (2015) Will climate change increase the risk of plant invasions into mountains? Ecol Appl. doi:10.​1890/​14-1871.​1
    Pettersson L, Boman J, Juto P, Evander M, Ahlm C (2008) Outbreak of Puumala virus infection, Sweden. Emerg Infect Dis 14(5):808–810CrossRef PubMedCentral PubMed
    Rasmann S, Pellissier L, Defossez E, Jactel H, Kunstler G (2014) Climate-driven change in plant–insect interactions along elevation gradients. Funct Ecol 28:46–54CrossRef
    Rodriguez-Cabal MA, Stuble KL, Guenard B, Dunn RR, Sanders NJ (2012) Disruption of ant-seed dispersal mutualisms by the invasive Asian needle ant (Pachycondyla chinensis). Biol Invasions 14:557–565CrossRef
    Roura-Pascual N, Hui C, Ikeda T, Leday G, Richardson DM et al (2011) Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc Natl Acad Sci USA 108(220–225):3. doi:10.​1073/​pnas.​1011723108
    Rozzi R, Armesto JJ, Goffinet B, Buck W, Massardo F, Silander J, Arroyo MT, Russell S, Anderson CB, Cavieres LA (2008) Changing lenses to assess biodiversity: patterns of species richness in sub-Antarctic plants and implications for global conservation. Front Ecol Environ 6:131–137CrossRef
    Ruiz GM, Hewitt CL (2009) Latitudinal patterns of biological invasions in marine ecosystems: a polar perspective. In: Krupnik I et al (eds) Smithsonian at the Poles. Contributions to International Polar Year Science. Smithsonian Inst. Press, Washington, pp 347–358CrossRef
    Rydén P, Björk R, Schäfer ML, Lundström JO, Petersén B, Lindblom A, Forsman M, Sjöstedt A, Johansson A (2012) Outbreaks of tularemia in a boreal forest region depends on mosquito prevalence. J Infect Dis 205:297–304CrossRef PubMedCentral PubMed
    Schock DM, Ruthig GR, Collins JP, Kutz SJ, Carrière S, Gau RJ, Veitch AM, Larter NC, Tate DP, Guthrie G (2010) Amphibian chytrid fungus and ranaviruses in the Northwest Territories, Canada. Dis Aquat Organ 92:231–240
    Seimon TA, Seimon A, Daszak P, Halloy SRP, Schloegel LM, Aguilar CA, Sowell P, Hyatt AD, Konecky B, Simmons JE (2007) Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob Change Biol 13:288–299CrossRef
    Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Natl Acad Sci 107:9689–9694CrossRef PubMedCentral PubMed
    Warren RJ, Chick L (2013) Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Glob Change Biol 19:2082–2088CrossRef
    Zefferman E, Stevens JT, Charles GK, Dunbar-Irwin M, Emam T, Fick S, Morales LV, Wolf KM, Young DJ, Young TP (2015) Plant communities in harsh sites are less invaded: a summary of observations and proposed explanations. AoB Plants 22;7. doi: 10.​1093/​aobpla/​plv056
  • 作者单位:Aníbal Pauchard (1) (2)
    Ann Milbau (3) (4)
    Ann Albihn (5) (6)
    Jake Alexander (7)
    Treena Burgess (8)
    Curtis Daehler (9)
    Göran Englund (10)
    Franz Essl (11) (12)
    Birgitta Evengård (13)
    Gregory B. Greenwood (14)
    Sylvia Haider (15) (16)
    Jonathan Lenoir (17)
    Keith McDougall (18)
    Erin Muths (19)
    Martin A. Nuñez (20)
    Johan Olofsson (10)
    Loic Pellissier (21) (22)
    Wolfgang Rabitsch (12)
    Lisa J. Rew (23)
    Mark Robertson (24)
    Nathan Sanders (25)
    Christoph Kueffer (26) (7)

    1. Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, Concepción, Chile
    2. Institute of Ecology and Biodiversity (IEB), Santiago, Chile
    3. Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Science, Umeå University, 981 07, Umeå, Sweden
    4. Department of Biodiversity and Natural Environment, Research Institute for Nature and Forest, Brussels, Belgium
    5. National Veterinary Institute, 751 89, Uppsala, Sweden
    6. Deparment of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
    7. Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
    8. Centre for Phytophthora Science and Management, Murdoch University, Perth, 6150, Australia
    9. Department of Botany, University of Hawaii, 3190 Maile Way, Honolulu, HI, 96822, USA
    10. Department of Ecology and Environmental Science, Umeå University, 901 87, Umeå, Sweden
    11. Division of Conservation Biology, Vegetation and Landscape Ecology, University of Vienna, Rennweg 14, 1030, Vienna, Austria
    12. Environment Agency Austria, Spittelauer Lände 5, 1090, Vienna, Austria
    13. Division of Infectious Diseases, Department of Clinical Microbiology, Umeå University, 901 87, Umeå, Sweden
    14. Mountain Research Initiative (MRI), Institute of Geography, University of Bern, Erlachstrasse 9A Trakt 3, 3012, Bern, Switzerland
    15. Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
    16. German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
    17. UR “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, FRE 3498 CNRS-UPJV), Université de Picardie Jules Verne, 1 Rue des Louvels, 80000, Amiens, France
    18. Department of Ecology, Environment and Evolution, La Trobe University, P.O. Box 821, Wodonga, VIC, 3689, Australia
    19. Fort Collins Science Center, U.S. Geological Survey, 2150 Centre Ave. Bldg C, Fort Collins, CO, 80526, USA
    20. Grupo de Ecología de Invasiones, Universidad Nacional del Comahue, INIBIOMA, CONICET, Quintral 1250, C.P. 8400, Bariloche, Argentina
    21. Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
    22. Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
    23. Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
    24. Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa
    25. Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
    26. Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Ecology
    Hydrobiology
    Zoology
    Forestry
  • 出版者:Springer Netherlands
  • ISSN:1573-1464
文摘
Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key discussions of the workshop ‘Biosecurity in Mountains and Northern Ecosystems: Current Status and Future Challenges’ (Flen, Sweden, 1–3 June 2015). The aims of the workshop were to (1) increase awareness about the growing importance of species expansion—both non-native and native—at high elevation and high latitude with climate change, (2) review existing knowledge about invasion risks in these areas, and (3) encourage more research on how species will move and interact in cold environments, the consequences for biodiversity, and animal and human health and wellbeing. The diversity of potential and actual invaders reported at the workshop and the likely interactions between them create major challenges for managers of cold environments. However, since these cold environments have experienced fewer invasions when compared with many warmer, more populated environments, prevention has a real chance of success, especially if it is coupled with prioritisation schemes for targeting invaders likely to have greatest impact. Communication and co-operation between cold environment regions will facilitate rapid response, and maximise the use of limited research and management resources.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700