Pax3 expression enhances PDGF-B-induced brainstem gliomagenesis and characterizes a subset of brainstem glioma
详细信息    查看全文
  • 作者:Katherine L Misuraca (1)
    Kelly L Barton (2) (3)
    Alexander Chung (2) (3)
    Alexander K Diaz (4) (5)
    Simon J Conway (6)
    David L Corcoran (7)
    Suzanne J Baker (5)
    Oren J Becher (2) (3) (8) (9)

    1. Graduate Program in Molecular Cancer Biology
    ; Duke University ; Durham ; NC ; USA
    2. Division of Pediatric Hematology-Oncology
    ; Duke University Medical Center ; Durham ; NC ; USA
    3. Preston Robert Tisch Brain Tumor Center
    ; Duke University Medical Center ; Durham ; NC ; USA
    4. Integrated Biomedical Sciences Program
    ; University of Tennessee Health Science Center ; Memphis ; TN ; USA
    5. Department of Developmental Neurobiology
    ; St. Jude Children鈥檚 Research Hospital ; Memphis ; TN ; 38105 ; USA
    6. Developmental Biology and Neonatal Medicine Program
    ; HB Wells Center for Pediatric Research ; Indiana University School of Medicine ; Indianapolis ; IN ; 46202 ; USA
    7. Institute for Genome Sciences and Policy
    ; Duke University ; Durham ; NC ; USA
    8. Department of Pathology
    ; Duke University Medical Center ; Durham ; NC ; USA
    9. Department of Pediatrics
    ; Duke University Medical Center ; 450 Research Drive ; Durham ; NC ; 27710 ; USA
  • 关键词:Brainstem Glioma ; Pax3 ; DIPG ; ACVR1
  • 刊名:Acta Neuropathologica Communications
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:2
  • 期:1
  • 全文大小:3,278 KB
  • 参考文献:1. Hargrave, D, Bartels, U, Bouffet, E (2006) Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol 7: pp. 241-248 CrossRef
    2. Grimm SA, Chamberlain MC (2013) Brainstem Glioma: A Review. Curr Neurol Neurosci Rep 13(5): doi:10.1007/s11910-013-0346-3
    3. Zarghooni, M, Bartels, U, Lee, E, Buczkowicz, P, Morrison, A, Huang, A, Bouffet, E, Hawkins, C (2010) Whole-Genome Profiling of Pediatric Diffuse Intrinsic Pontine Gliomas Highlights Platelet-Derived Growth Factor Receptor and Poly (ADP-ribose) Polymerase As Potential Therapeutic Targets. J Clin Oncol 28: pp. 1337-1344 CrossRef
    4. Paugh, BS, Broniscer, A, Qu, C, Miller, CP, Zhang, J, Tatevossian, RG, Olson, JM, Geyer, JR, Chi, SN, Silva, NS, Onar-Thomas, A, Baker, JN, Gajjar, A, Ellison, DW, Baker, SJ (2011) Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 29: pp. 3999-4006 CrossRef
    5. Puget, S, Philippe, C, Bax, DA, Job, B, Varlet, P, Junier, M-P, Andreiuolo, F, Carvalho, D, Reis, R, Guerrini-Rousseau, L, Roujeau, T, Dessen, P, Richon, C, Lazar, V, Teuff, G, Sainte-Rose, C, Geoerger, B, Vassal, G, Jones, C, Grill, J (2012) Mesenchymal Transition and PDGFRA Amplification/Mutation Are Key Distinct Oncogenic Events in Pediatric Diffuse Intrinsic Pontine Gliomas. PLoS One 7: pp. e30313 CrossRef
    6. Khuong-Quang, DA, Buczkowicz, P, Rakopoulos, P, Liu, XY, Fontebasso, AM, Bouffet, E, Bartels, U, Albrecht, S, Schwartzentruber, J, Letourneau, L, Bourgey, M, Bourque, G, Montpetit, A, Bourret, G, Lepage, P, Fleming, A, Lichter, P, Kool, M, Deimling, A, Sturm, D, Korshunov, A, Faury, D, Jones, DT, Majewski, J, Pfister, SM, Jabado, N, Hawkins, C (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124: pp. 439-447 CrossRef
    7. Schwartzentruber, J, Korshunov, A, Liu, XY, Jones, DT, Pfaff, E, Jacob, K, Sturm, D, Fontebasso, AM, Quang, DA, Tonjes, M, Hovestadt, V, Albrecht, S, Kool, M, Nantel, A, Konermann, C, Lindroth, A, Jager, N, Rausch, T, Ryzhova, M, Korbel, JO, Hielscher, T, Hauser, P, Garami, M, Klekner, A, Bognar, L, Ebinger, M, Schuhmann, MU, Scheurlen, W, Pekrun, A, Fruhwald, MC (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482: pp. 226-231 CrossRef
    8. Sturm, D, Witt, H, Hovestadt, V, Khuong-Quang, D-A, Jones David, TW, Konermann, C, Pfaff, E, T枚njes, M, Sill, M, Bender, S, Kool, M, Zapatka, M, Becker, N, Zucknick, M, Hielscher, T, Liu, X-Y, Fontebasso Adam, M, Ryzhova, M, Albrecht, S, Jacob, K, Wolter, M, Ebinger, M, Schuhmann Martin, U, Meter, T, Fr眉hwald Michael, C, Hauch, H, Pekrun, A, Radlwimmer, B, Niehues, T, Komorowski, G (2012) Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell 22: pp. 425-437 CrossRef
    9. Wu, G, Broniscer, A, McEachron, TA, Lu, C, Paugh, BS, Becksfort, J, Qu, C, Ding, L, Huether, R, Parker, M, Zhang, J, Gajjar, A, Dyer, MA, Mullighan, CG, Gilbertson, RJ, Mardis, ER, Wilson, RK, Downing, JR, Ellison, DW, Baker, SJ (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44: pp. 251-253 CrossRef
    10. Buczkowicz, P, Hoeman, C, Rakopoulos, P, Pajovic, S, Letourneau, L, Dzamba, M, Morrison, A, Lewis, P, Bouffet, E, Bartels, U, Zuccaro, J, Agnihotri, S, Ryall, S, Barszczyk, M, Chornenkyy, Y, Bourgey, M, Bourque, G, Montpetit, A, Cordero, F, Castelo-Branco, P, Mangerel, J, Tabori, U, Ho, KC, Huang, A, Taylor, KR, Mackay, A, Bendel, AE, Nazarian, J, Fangusaro, JR, Karajannis, MA (2014) Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46: pp. 451-456 CrossRef
    11. Wu, G, Diaz, AK, Paugh, BS, Rankin, SL, Ju, B, Li, Y, Zhu, X, Qu, C, Chen, X, Zhang, J, Easton, J, Edmonson, M, Ma, X, Lu, C, Nagahawatte, P, Hedlund, E, Rusch, M, Pounds, S, Lin, T, Onar-Thomas, A, Huether, R, Kriwacki, R, Parker, M, Gupta, P, Becksfort, J, Wei, L, Mulder, HL, Boggs, K, Vadodaria, B, Yergeau, D (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46: pp. 444-450 CrossRef
    12. Taylor, KR, Mackay, A, Truffaux, N, Butterfield, YS, Morozova, O, Philippe, C, Castel, D, Grasso, CS, Vinci, M, Carvalho, D, Carcaboso, AM, Torres, C, Cruz, O, Mora, J, Entz-Werle, N, Ingram, WJ, Monje, M, Hargrave, D, Bullock, AN, Puget, S, Yip, S, Jones, C, Grill, J (2014) Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 46: pp. 457-461 CrossRef
    13. Fontebasso, AM, Papillon-Cavanagh, S, Schwartzentruber, J, Nikbakht, H, Gerges, N, Fiset, PO, Bechet, D, Faury, D, Jay, N, Ramkissoon, LA, Corcoran, A, Jones, DT, Sturm, D, Johann, P, Tomita, T, Goldman, S, Nagib, M, Bendel, A, Goumnerova, L, Bowers, DC, Leonard, JR, Rubin, JB, Alden, T, Browd, S, Geyer, JR, Leary, S, Jallo, G, Cohen, K, Gupta, N, Prados, MD (2014) Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 46: pp. 462-466 CrossRef
    14. Zhang, L, Chen, LH, Wan, H, Yang, R, Wang, Z, Feng, J, Yang, S, Jones, S, Wang, S, Zhou, W, Zhu, H, Killela, PJ, Zhang, J, Wu, Z, Li, G, Hao, S, Wang, Y, Webb, JB, Friedman, HS, Friedman, AH, McLendon, RE, He, Y, Reitman, ZJ, Bigner, DD, Yan, H (2014) Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas. Nat Genet 46: pp. 726-730 CrossRef
    15. Sure, U, Ruedi, D, Tachibana, O, Yonekawa, Y, Ohgaki, H, Kleihues, P, Hegi, ME (1997) Determination of p53 mutations, EGFR overexpression, and loss of p16 expression in pediatric glioblastomas. J Neuropathol Exp Neurol 56: pp. 782-789 CrossRef
    16. Wakabayashi, T, Natsume, A, Hatano, H, Fujii, M, Shimato, S, Ito, M, Ohno, M, Ito, S, Ogura, M, Yoshida, J (2009) P16 Promoter Methylation in the Serum as a Basis for the Molecular Diagnosis of Gliomas. Neurosurgery 64: pp. 455-462 CrossRef
    17. Saratsis, AM, Kambhampati, M, Snyder, K, Yadavilli, S, Devaney, JM, Harmon, B, Hall, J, Raabe, EH, An, P, Weingart, M, Rood, BR, Magge, SN, MacDonald, TJ, Packer, RJ, Nazarian, J (2014) Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathol 127: pp. 881-895 CrossRef
    18. Lee Da, Y, Gianino, SM, Gutmann, DH (2012) Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. Cancer Cell 22: pp. 131-138 CrossRef
    19. Lee, DY, Yeh, TH, Emnett, RJ, White, CR, Gutmann, DH (2010) Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes Dev 24: pp. 2317-2329 CrossRef
    20. Sharma, MK, Mansur, DB, Reifenberger, G, Perry, A, Leonard, JR, Aldape, KD, Albin, MG, Emnett, RJ, Loeser, S, Watson, MA, Nagarajan, R, Gutmann, DH (2007) Distinct Genetic Signatures among Pilocytic Astrocytomas Relate to Their Brain Region Origin. Cancer Research 67: pp. 890-900 CrossRef
    21. Robson, EJD, He, S-J, Eccles, MR (2006) A PANorama of PAX genes in cancer and development. Nature Reviews Cancer 6: pp. 52-62 CrossRef
    22. Bang, AG, Papalopulu, N, Goulding, MD, Kintner, C (1999) Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm. Dev Biol 212: pp. 366-380 CrossRef
    23. Bang, AG, Papalopulu, N, Kintner, C, Goulding, MD (1997) Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Development 124: pp. 2075-2085
    24. Tanabe, Y, Jessell, TM (1996) Diversity and pattern in the developing spinal cord. Science 274: pp. 1115-1123 CrossRef
    Allen Developing Mouse Brain Atlas.
    25. Monsoro-Burq, A-H, Wang, E, Harland, R (2005) Msx1 and Pax3 Cooperate to Mediate FGF8 and WNT Signals during Xenopus Neural Crest Induction. Dev Cell 8: pp. 167-178 CrossRef
    26. Conway, SJ, Bundy, J, Chen, J, Dickman, E, Rogers, R, Will, BM (2000) Decreased neural crest stem cell expansion is responsible for the conotruncal heart defects within the splotch (Sp(2H))/Pax3 mouse mutant. Cardiovasc Res 47: pp. 314-328 CrossRef
    27. Olaopa, M, Zhou, HM, Snider, P, Wang, J, Schwartz, RJ, Moon, AM, Conway, SJ (2011) Pax3 is essential for normal cardiac neural crest morphogenesis but is not required during migration nor outflow tract septation. Dev Biol 356: pp. 308-322 CrossRef
    28. Epstein, DJ, Vekemans, M, Gros, P (1991) Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67: pp. 767-774 CrossRef
    29. Wang, XD, Morgan, SC, Loeken, MR (2011) Pax3 stimulates p53 ubiquitination and degradation independent of transcription. PLoS One 6: pp. e29379 CrossRef
    30. Pani, L, Horal, M, Loeken, MR (2002) Rescue of neural tube defects in Pax-3-deficient embryos by p53 loss of function: implications for Pax-3- dependent development and tumorigenesis. Genes Dev 16: pp. 676-680 CrossRef
    31. Chen, J, Xia, L, Wu, X, Xu, L, Nie, D, Shi, J, Xu, X, Ni, L, Ju, S, Wu, X, Zhu, H, Shi, W (2012) Clinical Significance and Prognostic Value of PAX3 Expression in Human Glioma. J Mol Neurosci 47: pp. 52-58 CrossRef
    32. Xia, L, Huang, Q, Nie, D, Shi, J, Gong, M, Wu, B, Gong, P, Zhao, L, Zuo, H, Ju, S, Chen, J, Shi, W (2013) PAX3 is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Brain Research 1521: pp. 68-78 CrossRef
    33. Becher, OJ, Hambardzumyan, D, Walker, TR, Helmy, K, Nazarian, J, Albrecht, S, Hiner, RL, Gall, S, Huse, JT, Jabado, N, MacDonald, TJ, Holland, EC (2010) Preclinical Evaluation of Radiation and Perifosine in a Genetically and Histologically Accurate Model of Brainstem Glioma. Cancer Research 70: pp. 2548-2557 CrossRef
    34. Barton, KL, Misuraca, K, Cordero, F, Dobrikova, E, Min, HD, Gromeier, M, Kirsch, DG, Becher, OJ (2013) PD-0332991, a CDK4/6 Inhibitor, Significantly Prolongs Survival in a Genetically Engineered Mouse Model of Brainstem Glioma. PLoS One 8: pp. e77639 CrossRef
    35. Dougherty, JD, Fomchenko, EI, Akuffo, AA, Schmidt, E, Helmy, KY, Bazzoli, E, Brennan, CW, Holland, EC, Milosevic, A (2012) Candidate pathways for promoting differentiation or quiescence of oligodendrocyte progenitor-like cells in glioma. Cancer Res 72: pp. 4856-4868 CrossRef
    36. Doyle, JP, Dougherty, JD, Heiman, M, Schmidt, EF, Stevens, TR, Ma, G, Bupp, S, Shrestha, P, Shah, RD, Doughty, ML, Gong, S, Greengard, P, Heintz, N (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135: pp. 749-762 CrossRef
    37. Koushik, SV, Chen, H, Wang, J, Conway, SJ (2002) Generation of a conditionalloxP allele of thePax3 transcription factor that enables selective deletion of the homeodomain. Genesis 32: pp. 114-117 CrossRef
    38. Encinas, JM, Vaahtokari, A, Enikolopov, G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 103: pp. 8233-8238 CrossRef
    39. Pitter, KL, Galban, CJ, Galban, S, Tehrani, OS, Li, F, Charles, N, Bradbury, MS, Becher, OJ, Chenevert, TL, Rehemtulla, A, Ross, BD, Holland, EC, Hambardzumyan, D (2011) Perifosine and CCI 779 co-operate to induce cell death and decrease proliferation in PTEN-intact and PTEN-deficient PDGF-driven murine glioblastoma. PLoS One 6: pp. e14545 CrossRef
    40. Bendall, AJ, Ding, J, Hu, G, Shen, MM, Abate-Shen, C (1999) Msx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors. Development 126: pp. 4965-4976
    41. Lewis, PW, Muller, MM, Koletsky, MS, Cordero, F, Lin, S, Banaszynski, LA, Garcia, BA, Muir, TW, Becher, OJ, Allis, CD (2013) Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma. Science 340: pp. 857-861 CrossRef
    42. Dai, C, Celestino, JC, Okada, Y, Louis, DN, Fuller, GN, Holland, EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15: pp. 1913-1925 CrossRef
    43. Paugh, BS, Qu, C, Jones, C, Liu, Z, Adamowicz-Brice, M, Zhang, J, Bax, DA, Coyle, B, Barrow, J, Hargrave, D, Lowe, J, Gajjar, A, Zhao, W, Broniscer, A, Ellison, DW, Grundy, RG, Baker, SJ (2010) Integrated Molecular Genetic Profiling of Pediatric High-Grade Gliomas Reveals Key Differences With the Adult Disease. J Clin Oncol 28: pp. 3061-3068 CrossRef
    44. Gautier, L, Cope, L, Bolstad, BM, Irizarry, RA (2004) affy鈥揳nalysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20: pp. 307-315 CrossRef
    45. Gentleman, RC, Carey, VJ, Bates, DM, Bolstad, B, Dettling, M, Dudoit, S, Ellis, B, Gautier, L, Ge, Y, Gentry, J, Hornik, K, Hothorn, T, Huber, W, Iacus, S, Irizarry, R, Leisch, F, Li, C, Maechler, M, Rossini, AJ, Sawitzki, G, Smith, C, Smyth, G, Tierney, L, Yang, JY, Zhang, J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: pp. R80 CrossRef
    46. Gentleman, R (2005) Bioinformatics and computational biology solutions using R and Bioconductor. Statistics for biology and health. Springer Science+Business Media, New York CrossRef
    47. Paugh, BS, Zhu, X, Qu, C, Endersby, R, Diaz, AK, Zhang, J, Bax, DA, Carvalho, D, Reis, RM, Onar-Thomas, A, Broniscer, A, Wetmore, C, Jones, C, Ellison, DW, Baker, SJ (2013) Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res 73: pp. 6219-6229 CrossRef
    48. Livak, KJ, Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(鈭扗elta Delta C(T)) Method. Methods 25: pp. 402-408 CrossRef
    49. Ballester, LY, Wang, Z, Shandilya, S, Miettinen, M, Burger, PC, Eberhart, CG, Rodriguez, FJ, Raabe, E, Nazarian, J, Warren, K, Quezado, MM (2013) Morphologic characteristics and immunohistochemical profile of diffuse intrinsic pontine gliomas. Am J Surg Pathol 37: pp. 1357-1364 CrossRef
    50. Chan, KM, Fang, D, Gan, H, Hashizume, R, Yu, C, Schroeder, M, Gupta, N, Mueller, S, James, CD, Jenkins, R, Sarkaria, J, Zhang, Z (2013) The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27: pp. 985-990 CrossRef
    51. Monje, M, Mitra, SS, Freret, ME, Raveh, TB, Kim, J, Masek, M, Attema, JL, Li, G, Haddix, T, Edwards, MSB, Fisher, PG, Weissman, IL, Rowitch, DH, Vogel, H, Wong, AJ, Beachy, PA (2011) Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci 108: pp. 4453-4458 CrossRef
    52. Chen, J, McKay, RM, Parada, LF (2012) Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149: pp. 36-47 CrossRef
    53. Underwood, TJ, Amin, J, Lillycrop, KA, Blaydes, JP (2007) Dissection of the functional interaction between p53 and the embryonic proto-oncoprotein PAX3. FEBS Letters 581: pp. 5831-5835 CrossRef
    54. He, SJ (2005) Transfection of melanoma cells with antisense PAX3 oligonucleotides additively complements cisplatin-induced cytotoxicity. Mol Cancer Ther 4: pp. 996-1003 CrossRef
    55. Scholl, FA, Kamarashev, J, Murmann, OV, Geertsen, R, Dummer, R, Schafer, BW (2001) PAX3 is expressed in human melanomas and contributes to tumor cell survival. Cancer Res 61: pp. 823-826
    56. Bernasconi, M, Remppis, A, Fredericks, WJ, Rauscher, FJ, Schafer, BW (1996) Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci U S A 93: pp. 13164-13169 CrossRef
  • 刊物主题:Neurosciences;
  • 出版者:BioMed Central
  • ISSN:2051-5960
文摘
High-grade Brainstem Glioma (BSG), also known as Diffuse Intrinsic Pontine Glioma (DIPG), is an incurable pediatric brain cancer. Increasing evidence supports the existence of regional differences in gliomagenesis such that BSG is considered a distinct disease from glioma of the cerebral cortex (CG). In an effort to elucidate unique characteristics of BSG, we conducted expression analysis of mouse PDGF-B-driven BSG and CG initiated in Nestin progenitor cells and identified a short list of expression changes specific to the brainstem gliomagenesis process, including abnormal upregulation of paired box 3 (Pax3). In the neonatal mouse brain, Pax3 expression marks a subset of brainstem progenitor cells, while it is absent from the cerebral cortex, mirroring its regional expression in glioma. Ectopic expression of Pax3 in normal brainstem progenitors in vitro shows that Pax3 inhibits apoptosis. Pax3-induced inhibition of apoptosis is p53-dependent, however, and in the absence of p53, Pax3 promotes proliferation of brainstem progenitors. In vivo, Pax3 enhances PDGF-B-driven gliomagenesis by shortening tumor latency and increasing tumor penetrance and grade, in a region-specific manner, while loss of Pax3 function extends survival of PDGF-B-driven;p53-deficient BSG-bearing mice by 33%. Importantly, Pax3 is regionally expressed in human glioma as well, with high PAX3 mRNA characterizing 40% of human BSG, revealing a subset of tumors that significantly associates with PDGFRA alterations, amplifications of cell cycle regulatory genes, and is exclusive of ACVR1 mutations. Collectively, these data suggest that regional Pax3 expression not only marks a novel subset of BSG but also contributes to PDGF-B-induced brainstem gliomagenesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700