Genome-wide Twist1 occupancy in endocardial cushion cells, embryonic limb buds, and peripheral nerve sheath tumor cells
详细信息    查看全文
  • 作者:Mary P Lee (13)
    Nancy Ratner (14)
    Katherine E Yutzey (13)

    13. Division of Molecular Cardiovascular Biology
    ; Cincinnati Children鈥檚 Hospital Medical Center ; Cincinnati ; Ohio ; 45229 ; USA
    14. Division of Experimental Hematology and Cancer Biology
    ; Cincinnati Children鈥檚 Hospital Medical Center ; Cincinnati ; Ohio ; 45229 ; USA
  • 关键词:Twist1 ; Endocardial cushions ; Limb buds ; Peripheral neuron sheath tumor cells ; ChIP ; ChIP ; seq
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,755 KB
  • 参考文献:1. Chen, ZF, Behringer, RR (1995) Twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 9: pp. 686-699 CrossRef
    2. Shelton, EL, Yutzey, KE (2008) Twist1 function in endocardial cushion cell proliferation, migration, and differentiation during heart valve development. Dev Biol 317: pp. 282-295 CrossRef
    3. Firulli, BA, Redick, BA, Conway, SJ, Firulli, AB (2007) Mutations within helix I of Twist1 result in distinct limb defects and variation of DNA binding affinities. J Biol Chem 282: pp. 27536-27546 CrossRef
    4. Barnes, RM, Firulli, AB (2009) A twist of insight - the role of Twist-family bHLH factors in development. Int J Dev Biol 53: pp. 909-924 CrossRef
    5. Lee, MP, Yutzey, KE (2011) Twist1 directly regulates genes that promote cell proliferation and migration in developing heart valves. PLoS One 6: pp. e29758 CrossRef
    6. Qin, Q, Xu, Y, He, T, Qin, C, Xu, J (2012) Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res 22: pp. 90-106 CrossRef
    7. Wirrig, EE, Hinton, RB, Yutzey, KE (2011) Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves. J Mol Cell Cardiol 50: pp. 561-569 CrossRef
    8. Bildsoe, H, Loebel, DA, Jones, VJ, Hor, AC, Braithwaite, AW, Chen, YT, Behringer, RR, Tam, PP (2013) The mesenchymal architecture of the cranial mesoderm of mouse embryos is disrupted by the loss of Twist1 function. Dev Biol 374: pp. 295-307 CrossRef
    9. Chakraborty, S, Wirrig, EE, Hinton, RB, Merrill, WH, Spicer, DB, Yutzey, KE (2010) Twist1 promotes heart valve cell proliferation and extracellular matrix gene expression during development in vivo and is expressed in human diseased aortic valves. Dev Biol 347: pp. 167-179 CrossRef
    10. Chakraborty, S, Cheek, J, Sakthivel, B, Aronow, BJ, Yutzey, KE (2008) Shared gene expression profiles in developing heart valves and osteoblast progenitor cells. Physiol Genomics 35: pp. 75-85 CrossRef
    11. Krawchuk, D, Weiner, SJ, Chen, YT, Lu, BC, Costantini, F, Behringer, RR, Laufer, E (2010) Twist1 activity thresholds define multiple functions in limb development. Dev Biol 347: pp. 133-146 CrossRef
    12. Vrljicak, P, Cullum, R, Xu, E, Chang, AC, Wederell, ED, Bilenky, M, Jones, SJ, Marra, MA, Karsan, A, Hoodless, PA (2012) Twist1 transcriptional targets in the developing atrio-ventricular canal of the mouse. PLoS One 7: pp. e40815 CrossRef
    13. Ansieau, S, Morel, AP, Hinkal, G, Bastid, J, Puisieux, A (2010) TWISTing an embryonic transcription factor into an oncoprotein. Oncogene 29: pp. 3173-3184 CrossRef
    14. Miller, SJ, Rangwala, F, Williams, J, Ackerman, P, Kong, S, Jegga, AG, Kaiser, S, Aronow, BJ, Frahm, S, Kluwe, L, Mautner, V, Upadhyaya, M, Muir, D, Wallace, M, Hagen, J, Quelle, DE, Watson, MA, Perry, A, Gutmann, DH, Ratner, N (2006) Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer Res 66: pp. 2584-2591 CrossRef
    15. Zhu, Y, Ghosh, P, Charnay, P, Burns, DK, Parada, LF (2002) Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296: pp. 920-922 CrossRef
    16. Jessen, WJ, Miller, SJ, Jousma, E, Wu, J, Rizvi, TA, Brundage, ME, Eaves, D, Widemann, B, Kim, MO, Dombi, E, Sabo, J, Hardiman Dudley, A, Niwa-Kawakita, M, Page, GP, Giovannini, M, Aronow, BJ, Cripe, TP, Ratner, N (2013) MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest 123: pp. 340-347 CrossRef
    17. Feng, MY, Wang, K, Shi, QT, Yu, XW, Geng, JS (2009) Gene expression profiling in TWIST-depleted gastric cancer cells. Anat Rec 292: pp. 262-270 CrossRef
    18. Zambelli, F, Pesole, G, Pavesi, G (2013) PscanChIP: Finding over-represented transcription factor-binding site motifs and their correlations in sequences from ChIP-Seq experiments. Nucleic Acids Res 41: pp. W535-W543 CrossRef
    19. Machanick, P, Bailey, TL (2011) MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27: pp. 1696-1697 CrossRef
    20. Taher, L, Collette, NM, Murugesh, D, Maxwell, E, Ovcharenko, I, Loots, GG (2011) Global gene expression analysis of murine limb development. PLoS One 6: pp. e28358 CrossRef
    21. Boeva, V, Lermine, A, Barette, C, Guillouf, C, Barillot, E (2012) Nebula鈥揳 web-server for advanced ChIP-seq data analysis. Bioinformatics 28: pp. 2517-2519 CrossRef
    22. Hutchins, AP, Poulain, S, Miranda-Saavedra, D (2012) Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood 119: pp. e110-e119 CrossRef
    23. Lee, KW, Lee, NK, Ham, S, Roh, TY, Kim, SH (2014) Twist1 is essential in maintaining mesenchymal state and tumor-initiating properties in synovial sarcoma. Cancer Lett 343: pp. 62-73 CrossRef
    24. Froeschle, A, Alric, S, Kitzmann, M, Carnac, G, Aurade, F, Rochette-Egly, C, Bonnieu, A (1998) Retinoic acid receptors and muscle b-HLH proteins: partners in retinoid-induced myogenesis. Oncogene 16: pp. 3369-3378 CrossRef
    25. Ray, SK, Nishitani, J, Petry, MW, Fessing, MY, Leiter, AB (2003) Novel transcriptional potentiation of BETA2/NeuroD on the secretin gene promoter by the DNA-binding protein Finb/RREB-1. Mol Cell Biol 23: pp. 259-271 CrossRef
    26. Chen, J, Bardes, EE, Aronow, BJ, Jegga, AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37: pp. W305-W311 CrossRef
    27. Di Maro, G, Orlandella, FM, Bencivenga, TC, Salerno, P, Ugolini, C, Basolo, F, Maestro, R, Salvatore, G (2014) Identification of targets of twist1 transcription factor in thyroid cancer cells. J Clin Endocrinol Metab 99: pp. E1617-E1626 CrossRef
    28. Tickle, C (2000) Limb development: an international model for vertebrate pattern formation. Int J Dev Biol 44: pp. 101-108
    29. Tran, PT, Shroff, EH, Burns, TF, Thiyagarajan, S, Das, ST, Zabuawala, T, Chen, J, Cho, YJ, Luong, R, Tamayo, P, Salih, T, Aziz, K, Adam, SJ, Vicent, S, Nielsen, CH, Withofs, N, Sweet-Cordero, A, Gambhir, SS, Rudin, CM, Felsher, DW (2012) Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis. PLoS Genet 8: pp. e1002650 CrossRef
    30. Kent, OA, Fox-Talbot, K, Halushka, MK (2013) RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets. Oncogene 32: pp. 2576-2585 CrossRef
    31. Clevers, H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127: pp. 469-480 CrossRef
    32. Liebner, S, Cattelino, A, Gallini, R, Rudini, N, Iurlaro, M, Piccolo, S, Dejana, E (2004) Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 166: pp. 359-367 CrossRef
    33. Alfieri, CM, Cheek, J, Chakraborty, S, Yutzey, KE (2010) Wnt signaling in heart valve development and osteogenic gene induction. Dev Biol 338: pp. 127-135 CrossRef
    34. Cai, X, Zhang, W, Hu, J, Zhang, L, Sultana, N, Wu, B, Cai, W, Zhou, B, Cai, CL (2013) Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis. Development 140: pp. 3176-3187 CrossRef
    35. Kawakami, Y, Capdevila, J, Buscher, D, Itoh, T, Rodriguez Esteban, C, Izpisua Belmonte, JC (2001) WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 104: pp. 891-900 CrossRef
    36. Kawakami, Y, Marti, M, Kawakami, H, Itou, J, Quach, T, Johnson, A, Sahara, S, O'Leary, DD, Nakagawa, Y, Lewandoski, M, Pfaff, S, Evans, SM, Izpisua Belmonte, JC (2011) Islet1-mediated activation of the beta-catenin pathway is necessary for hindlimb initiation in mice. Development 138: pp. 4465-4473 CrossRef
    37. Cooper, KL, Hu, JK, ten Berge, D, Fernandez-Teran, M, Ros, MA, Tabin, CJ (2011) Initiation of proximal-distal patterning in the vertebrate limb by signals and growth. Science 332: pp. 1083-1086 CrossRef
    38. Yasuhara, R, Yuasa, T, Williams, JA, Byers, SW, Shah, S, Pacifici, M, Iwamoto, M, Enomoto-Iwamoto, M (2010) Wnt/beta-catenin and retinoic acid receptor signaling pathways interact to regulate chondrocyte function and matrix turnover. J Biol Chem 285: pp. 317-327 CrossRef
    39. Bradley, EW, Drissi, MH (2011) Wnt5b regulates mesenchymal cell aggregation and chondrocyte differentiation through the planar cell polarity pathway. J Cell Physiol 226: pp. 1683-1693 CrossRef
    40. Rahrmann, EP, Watson, AL, Keng, VW, Choi, K, Moriarity, BS, Beckmann, DA, Wolf, NK, Sarver, A, Collins, MH, Moertel, CL, Wallace, MR, Gel, B, Serra, E, Ratner, N, Largaespada, DA (2013) Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet 45: pp. 756-766 CrossRef
    41. Mo, W, Chen, J, Patel, A, Zhang, L, Chau, V, Li, Y, Cho, W, Lim, K, Xu, J, Lazar, AJ, Creighton, CJ, Bolshakov, S, McKay, RM, Lev, D, Le, LQ, Parada, LF (2013) CXCR4/CXCL12 mediate autocrine cell- cycle progression in NF1-associated malignant peripheral nerve sheath tumors. Cell 152: pp. 1077-1090 CrossRef
    42. Ren, D, Minami, Y, Nishita, M (2011) Critical role of Wnt5a-Ror2 signaling in motility and invasiveness of carcinoma cells following Snail-mediated epithelial-mesenchymal transition. Genes Cells 16: pp. 304-315 CrossRef
    43. Lee, KW, Kim, JH, Han, S, Sung, CO, Do, IG, Ko, YH, Um, SH, Kim, SH (2012) Twist1 is an independent prognostic factor of esophageal squamous cell carcinoma and associated with its epithelial-mesenchymal transition. Ann Surg Oncol 19: pp. 326-335 CrossRef
    44. Shelton, EL, Yutzey, KE (2007) Tbx20 regulation of endocardial cushion cell proliferation and extracellular matrix gene expression. Dev Biol 302: pp. 376-388 CrossRef
    45. Vogel, KS, Klesse, LJ, Velasco-Miguel, S, Meyers, K, Rushing, EJ, Parada, LF (1999) Mouse tumor model for neurofibromatosis type 1. Science 286: pp. 2176-2179 CrossRef
    46. Nielsen, R, Pedersen, TA, Hagenbeek, D, Moulos, P, Siersbaek, R, Megens, E, Denissov, S, Borgesen, M, Francoijs, KJ, Mandrup, S, Stunnenberg, HG (2008) Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev 22: pp. 2953-2967 CrossRef
    47. Langmead, B, Trapnell, C, Pop, M, Salzberg, SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: pp. R25 CrossRef
    48. Mi, H, Muruganujan, A, Thomas, PD (2013) PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 41: pp. D377-D386 CrossRef
    49. Zuberi, K, Franz, M, Rodriguez, H, Montojo, J, Lopes, CT, Bader, GD, Morris, Q (2013) GeneMANIA Prediction Server 2013 Update. Nucleic Acids Res 41: pp. W115-W122 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background The basic helix-loop-helix transcription factor Twist1 has well-documented roles in progenitor populations of the developing embryo, including endocardial cushions (ECC) and limb buds, and also in cancer. Whether Twist1 regulates the same transcriptional targets in different tissue types is largely unknown. Results The tissue-specificity of Twist1 genomic occupancy was examined in mouse ECCs, limb buds, and peripheral nerve sheath tumor (PNST) cells using chromatin immunoprecipitation followed by sequencing (Chip-seq) analysis. Consistent with known Twist1 functions during development and in cancer cells, Twist1-DNA binding regions associated with genes related to cell migration and adhesion were detected in all three tissues. However, the vast majority of Twist1 binding regions were specific to individual tissue types. Thus, while Twist1 has similar functions in ECCs, limb buds, and PNST cells, the specific genomic sequences occupied by Twist1 were different depending on cellular context. Subgroups of shared genes, also predominantly related to cell adhesion and migration, were identified in pairwise comparisons of ECC, limb buds and PNST cells. Twist1 genomic occupancy was detected for six binding regions in all tissue types, and Twist1-binding sequences associated with Chst11, Litaf, Ror2, and Spata5 also bound the potential Twist1 cofactor RREB1. Pathway analysis of the genes associated with Twist1 binding suggests that Twist1 may regulate genes associated with the Wnt signaling pathway in ECCs and limb buds. Conclusions Together, these data indicate that Twist1 interacts with genes that regulate adhesion and migration in different tissues, potentially through distinct sets of target genes. In addition, there is a small subset of genes occupied by Twist1 in all three tissues that may represent a core group of Twist1 target genes in multiple cell types.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700