Repetitive sequences in Eragrostis curvula cDNA EST libraries obtained from genotypes with different ploidy
详细信息    查看全文
  • 作者:J. Romero ; J. P. Selva ; S. Pessino ; V. Echenique ; I. Garbus
  • 关键词:diplosporous apomixis ; transposable elements ; weeping lovegrass
  • 刊名:Biologia Plantarum
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:60
  • 期:1
  • 页码:55-67
  • 全文大小:1,332 KB
  • 参考文献:Adams, K.L., Cronn, R.C., Percifield, R., Wendel, J.F.: Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. — Proc. nat. Acad. Sci. USA 100: 4649–4654, 2003.PubMedCentral CrossRef PubMed
    Arabidopsis Genome Initiative: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. — Nature 408: 796–815, 2000.CrossRef
    Asker, S.E., Jerling, L.: Apomixis in Plants. — CRC Press, Boca Raton 1992.
    Barcaccia, G., Albertini, E.: Apomixis in plant reproduction: a novel perspective on an old dilemma. — Plant Reprod. 26; 159–179, 2013.PubMedCentral CrossRef PubMed
    Bedell, J.A., Korf, I., Gish, W.: MaskerAid: a performance enhancement to RepeatMasker. — Bioinformatics 16: 1040–1041, 2000.CrossRef PubMed
    Bennetzen, J.L.: The contributions of retroelements to plant genome organization, function and evolution. — Trends Microbiol. 4: 347–353, 1996.CrossRef PubMed
    Blumenstiel, J.P.: Evolutionary dynamics of transposable elements in a small RNA world. — Trends Genet. 27: 23–31, 2011.CrossRef PubMed
    Cardone, S., Polci, P., Selva, J.P., Mecchia, M., Pessino, S., Hermann, P., Cambi, V., Voigt, P., Spangenberg, G. Echenique, V.: Novel genotypes of the subtropical grass Eragrostis curvula for the study of apomixis (diplospory). — Euphytica 151: 263–272, 2006.CrossRef
    Cervigni, G.D.L., Paniego, N., Díaz, M., Selva, J.P., Zappacosta, D., Zanazzi, D., Landerreche, I., Martelotto, L., Felitti, S., Pessino, S., Spangenberg, G., Echenique, V.; Expressed sequence tag analysis and development of gene associated markers in a near-isogenic plant system of Eragrostis curvula. — Plant mol. Biol. 67: 1–10, 2008a.CrossRef PubMed
    Cervigni, G.D.L., Paniego, N., Pessino, S., Selva, J.P., Díaz, M., Spangenberg, G., Echenique, V.: Gene expression in diplosporous and sexual Eragrostis curvula genotypes with differing ploidy levels. — Plant. mol. Biol. 67: 11–23, 2008b.CrossRef PubMed
    Chandler, V.L., Brendel, V.: The maize genome sequencing project. — Plant Physiol. 130: 1594–1597, 2002.PubMedCentral CrossRef PubMed
    Cheng, X., Zhang, D., Cheng, Z., Keller, B., Ling, H.Q.: A new family of Ty1-copia_like retrotransposons originated in the tomato genome by a recent horizontal transfer event. — Genetics 181: 1183–1193, 2009.PubMedCentral CrossRef PubMed
    Chung, T., Kim, C.S., Nguyen, H.N., Meeley, R.B., Larkins, B.A.: The maize zmsmu2 gene encodes a putative RNAsplicing factor that affects protein synthesis and RNA processing during endosperm development. — Plant Physiol. 144: 821–835, 2007.PubMedCentral CrossRef PubMed
    Chung, T., Wang, D., Kim, C.S., Yadegari, R., Larkins, B.A.; Plant SMU-1 and SMU-2 homologues regulate pre-mRNA splicing and multiple aspects of development. — Plant Physiol. 151: 1498–1512, 2009.PubMedCentral CrossRef PubMed
    Comai, L., Tyagi, A.P., Winter, K., Holmes-Davis, R., Reynolds, S.H., Stevens,.Y, Byers, B.: Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. — Plant Cell 12: 1551–1567, 2000.PubMedCentral CrossRef PubMed
    Conesa, A., Götzm, S., Garcia-Gomez, J.M., Terol, J., Talon, M., Robles, M.: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. — Bioinformatics 21: 3674–3676, 2005.CrossRef PubMed
    Crane, C.F.: Classification of apomictic mechanisms. — In; Savidan, Y., Carman, J.G., Dresselhaus, T. (ed.): The Flowering of Apomixis: from Mechanisms to Genetic Engineering. Pp. 24–43. CIMMYT, Mexico 2001.
    De Araujo, P.G., Rossi, M., De Jesus, E.M., Saccaro, N.L., Kajihara, D., Massa, R., De Felix, J.M., Drummond, R.D., Falco, M.C., Chabregas, S.M., Ulian, E.C., Menossi, M., Van Sluys, M.A.V.: Transcriptionally active transposable elements in recent hybrid sugarcane. — Plant J. 44: 707–717, 2005.CrossRef PubMed
    Diaz, M.L., Garbus, I., Echenique, V.: Allele-specific expression of a weeping lovegrass gene from the lignin biosynthetic pathway, caffeoyl-coenzyme A 3-O-methyltransferase. — Mol. Breed. 26: 627–637, 2010.CrossRef
    Duarte Silveira, E., Alves-Ferreira, M., Arrais Guimaraes, L., Rodrigues da Silva, F., Tavares de Campos Carneiro, V.; Selection of reference genes for quantitative real-time PCR expression studies in the apomictic and sexual grass Brachiaria brizantha. — BMC Plant Biol. 9: 84, 2009.CrossRef
    Echenique, V., Stamova, B., Wolters, P., Lazo, G., Carollo, L., Dubcovsky, J.: Frequencies of Ty1- Copia and Ty3- Gypsy retroelements within the Triticeae EST databases. — Theor. appl. Genet. 104: 840–844, 2002.CrossRef PubMed
    Gómez, E., Schulman, A.H., Martínez-Izquierdo, J.A., Vicient, C.M.: Integrase diversity and transcription of the maize retrotransposon Grande. — Genome 49: 558–562, 2006.CrossRef PubMed
    González, L.G., Deyholos, M.K.: Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome. — BMC Genomics 13; 644, 2012.PubMedCentral CrossRef PubMed
    Hirochika, H.: Activation of tobacco retrotransposons during tissue culture. — EMBO J. 12: 2521–2528, 1993.PubMedCentral PubMed
    Kashkush, K., Feldman, M., Levy A.: Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. — Genetics 160: 1651–1659, 2002.PubMedCentral PubMed
    Kashkush, K., Feldman, M., Levy, A.A.: Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. — Nat. Genet. 33: 102–106, 2003.CrossRef PubMed
    Kidwell, M.G.: Transposable elements and the evolution of genome size in eukaryotes. — Genetica 115: 49–63, 2002.CrossRef PubMed
    Krom, N., Recla, J., Ramakrishna, W.: Analysis of genes associated with retrotransposons in the rice genome. — Genetica 134: 297–310, 2008.CrossRef PubMed
    Li, W.D., Hu, X., Liu, J.K., Jiang, G.M., Li, O., Xing, D.; Chromosome doubling can increase heat tolerance in Lonicera japonica as indicated by chlorophyll fluorescence imaging. — Biol. Plant. 55: 279–284, 2011.CrossRef
    Lisch, D.: How important are transposons for plant evolution? — Nat. Rev. Genet. 14: 49–61, 2013.CrossRef PubMed
    Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. — Methods 25: 402–408, 2001.CrossRef PubMed
    Lockton, S., Gaut, B.S.: The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana. — J. mol. Evol. 68: 80–89, 2009.CrossRef PubMed
    Ma, X.-F., Gustafson, J.P.: Genome evolution of allopolyploids; a process of cytological and genetic diploidization. Cytogenet. Genome Res. 109: 236–249, 2005.CrossRef PubMed
    Martelotto, L.G., Ortiz, J.P.A., Stein, J., Espinoza, F., Quarin, C.L., Pessino, S.C.: A comprehensive analysis of gene expression alterations in a newly synthesized Paspalum notatum autotetraploidy. — Plant Sci. 169: 211–220, 2005.CrossRef
    Mecchia, M.A., Ochogavía, A., Selva, J.P., Laspina, N., Felitti, S., Martelotto, L.G., Spangenberg, G., Echenique, V., Pessino, S.C.: Genome polymorphisms and gene differential expression in a ’back-andforth’ ploidy-altered series of weeping lovegrass (Eragrostis curvula). — J. Plant Physiol. 164: 1051–1061, 2007.CrossRef PubMed
    Meier, M., Zappacosta, D., Selva, J.P., Pessino, S., Echenique, V.: Evaluation of different methods for assessing the reproductive mode of weeping lovegrass plants, Eragrostis curvula (Schrad.) Nees. — Aust. J. Bot. 59: 253–261, 2011.CrossRef
    Messing, J., Bharti, A.K., Karlowski, W.M., Gundlach, H., Kim, H.R., Yu, Y., Wei, F., Fuks, G., Soderlund, C.A., Mayer, K.F., Wing, R.A.: Sequence composition and genome organization of maize. — Proc. nat. Acad. Sci. USA 101: 14349–14354, 2004.PubMedCentral CrossRef PubMed
    Mhiri, C., Morel, J.B., Vernhettes, S., Casacuberta, J.M., Lucas, H., Grandbastien, M.A.: The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. — Plant mol. Biol. 33: 257–266, 1997.CrossRef PubMed
    Muthukumar, B., Bennetzen, J.L.: Isolation and characterization of genomic and transcribed retrotransposon sequences from sorghum. — Mol. Genet. Genom. 271: 308–316, 2004.CrossRef
    Newcombe, R.G.: Two-sided confidence intervals for the single proportion: comparison of seven methods. — Statistics Medicine 17: 857–872, 1998CrossRef
    Nogler, G.A., Gametophytic apomixis. — In: Johri, B.M. (ed.); Embryology of Angiosperms. Pp. 475–518. Springer-Verlag, Berlin 1984.CrossRef
    Ochogavia, A.C., Seijo, J.G., Gonzalez, A.M., Podio, M., Duarte Silveira, E., Machado Lacerda, A.L., Tavares de Campos Carneiro, V., Ortiz, J.P., Pessino, S.C.; Characterization of retrotransposon sequences expressed in inflorescences of apomictic and sexual Paspalum notatum plants. — Sex. Plant Reprod. 24: 231–246, 2011.CrossRef PubMed
    Okada, T., Ito, K., Johnson, S.D., Oelkers, K., Suzuki, G., Houben, A., Mukai, Y., Koltunow, A.M.: Chromosomes carrying meiotic avoidance loci in three apomictic eudicot Hieracium subgenus Pilosella species share structural features with two monocot apomicts. — Plant Physiol. 157; 1327–1341, 2011.PubMedCentral CrossRef PubMed
    Oliver, K.R., McComb, J.A., Greene, W.K.: Transposable elements: powerful contributors to angiosperm evolution and diversity. — Genome Biol. Evol. 5: 1886–1901, 2013.PubMedCentral CrossRef PubMed
    Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., Schmutz, J., Spannagl, M., Tang, H., Wang, X., Wicker, T., Bharti, A.K., Chapman, J., Feltus, F.A., Gowik, U., Grigoriev, I.V., Lyons, E., Maher, C.A., Martis, M., Narechania, A., Otillar, R.P., Penning, B.W., Salamov, A.A., Wang, Y., Zhang, L., Carpita, N.C., Freeling, M., Gingle, A.R., Hash, C.T., Keller, B., Klein, P., Kresovich, S., McCann, M.C., Ming, R., Peterson, D.G., Mehboob-ur-Rahman, Ware, D., Westhoff, P., Mayer, K.F., Messing, J., Rokhsar, D.S.: The Sorghum bicolor genome and the diversification of grasses. — Nature 457: 551–556, 2009.CrossRef PubMed
    Picault, N., Chaparro, C., Piegu, B., Stenger, W., Formey, D., Llauro, C., Descombin, J., Sabot, F., Lasserre, E., Meynard, D., Guiderdoni, E., Panaud, O.: Identification of an active LTR retrotransposon in rice. — Plant J. 58: 754–765, 2009.CrossRef PubMed
    Plohl, M., LuchettI, A., Mestrović, N., Mantovani, B.: Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. — Gene 409: 72–82, 2008.CrossRef PubMed
    Pouteau, S., Huttner, E., Grandbastien, M.A., Caboche, M.; Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. — EMBO J. 10: 1911–1918, 1991.PubMedCentral PubMed
    Project IRGSP: The map-based sequence of the rice genome. — Nature 436: 793–800, 2005.CrossRef
    Quarin, C.L., Espinoza, F., Martínez, E.J., Pessino, S.C., Bovo, O.A.: A rise of ploidy level induces the expression of apomixis in Paspalum notatum. — Sex. Plant Reprod. 13; 243–249, 2001.CrossRef
    Rabinowicz, P.D., Bennetzen, J.L.: The maize genome as a model for efficient sequence analysis of large plant genomes. — Curr. Opin. Plant Biol. 9: 146–156, 2006.CrossRef
    Ramallo, E., Kalendar, R., Schulman, A.H., Martínez-Izquierdo, J.A.: Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light. — Plant mol. Biol. 66; 137–150, 2008.CrossRef PubMed
    Rebozzio R., Sartor M., Quarin C., Espinoza F.: Residual sexuality and its seasonal variation in natural apomictic Paspalum notatum. — Biol. Plant. 55: 391–395, 2011.CrossRef
    Rodriguez, M.P., Cervigni, G.D.L., Quarin, C.L. Ortiz, J.P.A.; Frequencies and variation in cytosine methylation patterns in diploid and tetraploid cytotypes of Paspalum notatum. — Biol. Plant. 56: 276–282, 2012.CrossRef
    Saze, H., Kakutani, T.: Differentiation of epigenetic modifications between transposons and genes. — Curr. Opin. Plant Biol. 14: 81–87, 2011.CrossRef PubMed
    Selva, J.P., Pessino, S., Meier, M., Echenique, V.: Identification of candidate genes related to polyploidy and/or apomixis in Eragrostis curvula. — Amer. J. Plant Sci. 3: 403–416, 2012.CrossRef
    Thomas, C.A., Jr.: The genetic organization of chromosomes. — Annu. Rev. Genet. 5: 237–256, 1971.CrossRef PubMed
    Ueki, N., Nishii, I.: Idaten is a new cold-inducible transposon of Volvox carteri that can be used for tagging developmentally important genes. — Genetics 180: 1343–1353, 2008.PubMedCentral CrossRef PubMed
    Vicient, C.: Transcriptional activity of transposable elements in maize. — BMC Genomics 11: 601, 2010.PubMedCentral CrossRef PubMed
    Vicient, C.M., Jääskeläinen, M.J., Kalendar, R., Schulman, A.H.: Active retrotransposons are a common feature of grass genomes. — Plant Physiol. 125: 1283–1292, 2001.PubMedCentral CrossRef PubMed
    Vicient, C.M., Schulman, A.H.: Copia-like retrotransposons in the rice genome: few and assorted. — Genome Lett. 1: 35–47, 2002.CrossRef
    Voigt, P., Rethman, N., Poverene, M.: Warm-Season (C4) Grasses. — American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison 2004.
    Wang, J., Tian, L., Madlung, A., Lee, H.S., Chen, M., Lee, J.J., Watson, B., Kagochi, T., Comai, L., Chen, Z.J.: Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. — Genetics 167: 1961–1973, 2004.PubMedCentral CrossRef PubMed
    Watson, L., Dallwitz, M.J.: The Grass Genera of the World. — CAB International, Wallingford 1992.
    Wendel, J.F.: Genome evolution in polyploids. — Plant mol. Biol 42: 225–249, 2000.CrossRef PubMed
    Wicker, T., Sabot F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., San Miguel, P., Schulman, A.H.: A unified classification system for eukaryotic transposable elements. — Nat. Rev. Genet. 8: 973–982, 2007.CrossRef PubMed
    Zappacosta, D.C., Ochogavía, A.C., Rodrigo, J.M., Romero, J.R., Meier, M.S., Garbus, I., Pessino S.C., Echenique, V.C.: Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid. — Sci. Rep. 4: 4423, 2014.PubMedCentral CrossRef PubMed
    Zhou, F., Xu. Y.: RepPop: a database for repetitive elements in Populus trichocarpa. — BMC Genomics 10: 14, 2009.PubMedCentral CrossRef PubMed
  • 作者单位:J. Romero (1)
    J. P. Selva (1) (2)
    S. Pessino (3)
    V. Echenique (1) (4)
    I. Garbus (1) (5)

    1. Centro de Recursos Naturales Renovables de la Zona Semiárida, CONICET, 8000, Bahía Blanca, Argentina
    2. Departamento de Biología Bioquímica y Farmacia, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina
    3. Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
    4. Departamento de Agronomía, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina
    5. Departamento de Ciencias de la Salud, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
  • 出版者:Springer Netherlands
  • ISSN:1573-8264
文摘
Eragrostis curvula (Schrad) Nees (weeping lovegrass) represents important cultivated forage in semiarid regions, and the most useful cultivars are tetraploid and reproduce by pseudogamous diplosporous apomixis. We previously produced a series of genetically related E. curvula lines that provide a suitable system for the identification of gene(s) involved in diplosporous apomixis and ploidy, including a natural apomictic tetraploid (T), a diploid sexual line (D), and a tetraploid sexual plant (C). A collection of expressed sequence tags (ESTs) was generated from cDNA libraries obtained from panicles of the D, T, and C, and leaves of the T. The present study aimed to analyze the repetitive content of these four cDNA libraries and further identify and characterize transposable element (TE)-related ESTs. Repetitive sequences were identified through the interface RepeatMasker (RM) using the database Repbase Update and further classification of TEs was performed manually from the RM output. The different contribution of ESTs with identity to TEs among libraries was further evaluated, and such differences were validated through RT-qPCR. We found that the percentage of repetitive content in the leaf cDNA library was almost double than in inflorescence libraries, with retrotransposons contributing mostly in all libraries. The expression of TE-related ESTs was compared in cDNA samples extracted from D, T, and C leaves or inflorescences revealing that seven mRNAs containing MuDR-like DNA transposons, Gypsy-like, and Copia-like retrotransposons were differentially represented according to tissue, reproductive mode, or ploidy. The euploid series of Eragrostis curvula is a useful model to the study of epigenomic changes produced after changes in ploidy. The present work constitutes the first detailed report on repetitive sequences of Eragrostis curvula at the transcriptome level. Additional key words diplosporous apomixis transposable elements weeping lovegrass

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700