Growth and repair factors, osteoactivin, matrix metalloproteinase and heat shock protein 72, increase with resolution of inflammation in musculotendinous tissues in a rat model of repetitive grasping
详细信息    查看全文
  • 作者:Nagat Frara ; Samir M. Abdelmagid ; Michael Tytell…
  • 关键词:Overuse ; Osteoactivin ; Metalloproteinases ; Heat shock protein ; Restorative repair ; Muscle ; Tendon
  • 刊名:BMC Musculoskeletal Disorders
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:17
  • 期:1
  • 全文大小:1,739 KB
  • 参考文献:1.Horton R. GBD 2010: understanding disease, injury, and risk. Lancet. 2012;380(9859):2053–4. doi:10.​1016/​S0140-6736(12)62133-3 .PubMed CrossRef
    2.Piligian G, Herbert R, Hearns M, Dropkin J, Landsbergis P, Cherniack M. Evaluation and management of chronic work-related musculoskeletal disorders of the distal upper extremity. Am J Ind Med. 2000;37(1):75–93.PubMed CrossRef
    3.van Rijn RM, Huisstede BM, Koes BW, Burdorf A. Associations between work-related factors and the carpal tunnel syndrome—a systematic review. Scand J Work Environ Health. 2009;35(1):19–36.PubMed CrossRef
    4.Gallagher S, Heberger JR. Examining the interaction of force and repetition on musculoskeletal disorder risk: a systematic literature review. Hum Factors. 2013;55(1):108–24.PubMed PubMedCentral CrossRef
    5.Kannus P, Jozsa L, Natri A, Jarvinen M. Effects of training, immobilization and remobilization on tendons. Scand J Med Sci Sports. 1997;7(2):67–71.PubMed CrossRef
    6.Barr AE, Barbe MF. Pathophysiological tissue changes associated with repetitive movement: a review of the evidence. Phys Ther. 2002;82(2):173–87.PubMed PubMedCentral
    7.Cutlip RG, Hollander MS, Johnson GA, Johnson BW, Friend SA, Baker BA. Magnetic resonance imaging of graded skeletal muscle injury in live rats. Environ Health Insights. 2014;8 Suppl 1:31–9. doi:10.​4137/​EHI.​S15255 .PubMed PubMedCentral
    8.Barbe MF, Barr AE. Inflammation and the pathophysiology of work-related musculoskeletal disorders. Brain Behav Immun. 2006;20(5):423–9. doi:10.​1016/​j.​bbi.​2006.​03.​001 .PubMed PubMedCentral CrossRef
    9.Barbe MF, Barr AE, Gorzelany I, Amin M, Gaughan JP, Safadi FF. Chronic repetitive reaching and grasping results in decreased motor performance and widespread tissue responses in a rat model of MSD. J Orthop Res. 2003;21(1):167–76. doi:10.​1016/​S0736-0266(02)00086-4 .PubMed PubMedCentral CrossRef
    10.Abdelmagid SM, Barr AE, Rico M, Amin M, Litvin J, Popoff SN, et al. Performance of repetitive tasks induces decreased grip strength and increased fibrogenic proteins in skeletal muscle: role of force and inflammation. PLoS ONE. 2012;7(5):e38359. doi:10.​1371/​journal.​pone.​0038359 .PubMed PubMedCentral CrossRef
    11.Barr AE, Barbe MF, Clark BD. Systemic inflammatory mediators contribute to widespread effects in work-related musculoskeletal disorders. Exerc Sport Sci Rev. 2004;32(4):135–42.PubMed CrossRef
    12.Cutlip RG, Baker BA, Hollander M, Ensey J. Injury and adaptive mechanisms in skeletal muscle. J Electromyogr Kinesiol. 2009;19(3):358–72. doi:10.​1016/​j.​jelekin.​2008.​06.​007 .PubMed CrossRef
    13.Abdelmagid SM, Barbe MF, Hadjiargyrou M, Owen TA, Razmpour R, Rehman S, et al. Temporal and spatial expression of osteoactivin during fracture repair. J Cell Biochem. 2010;111(2):295–309. doi:10.​1002/​jcb.​22702 .PubMed CrossRef
    14.Furochi H, Tamura S, Mameoka M, Yamada C, Ogawa T, Hirasaka K, et al. Osteoactivin fragments produced by ectodomain shedding induce MMP-3 expression via ERK pathway in mouse NIH-3T3 fibroblasts. FEBS Lett. 2007;581(30):5743–50. doi:10.​1016/​j.​febslet.​2007.​11.​036 .PubMed CrossRef
    15.Furochi H, Tamura S, Takeshima K, Hirasaka K, Nakao R, Kishi K, et al. Overexpression of osteoactivin protects skeletal muscle from severe degeneration caused by long-term denervation in mice. J MedInvest. 2007;54(3–4):248–54.
    16.Ogawa T, Nikawa T, Furochi H, Kosyoji M, Hirasaka K, Suzue N, et al. Osteoactivin upregulates expression of MMP-3 and MMP-9 in fibroblasts infiltrated into denervated skeletal muscle in mice. Am J Physiol. 2005;289(3):C697–707.CrossRef
    17.Shikano S, Bonkobara M, Zukas PK, Ariizumi K. Molecular Cloning of a Dendritic Cell-associated Transmembrane Protein, DC-HIL, That Promotes RGD-dependent Adhesion of Endothelial Cells through Recognition of Heparan Sulfate Proteoglycans. J Biol Chem. 2001;276(11):8125–34.PubMed CrossRef
    18.Psarras S, Mavroidis M, Sanoudou D, Davos CH, Xanthou G, Varela AE, et al. Regulation of adverse remodelling by osteopontin in a genetic heart failure model. Eur Heart J. 2012;33(15):1954–63. doi:10.​1093/​eurheartj/​ehr119 .PubMed CrossRef
    19.Hoashi T, Sato S, Yamaguchi Y, Passeron T, Tamaki K, Hearing VJ. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein. FASEB J. 2010;24(5):1616–29. doi:10.​1096/​fj.​09-151019 .PubMed PubMedCentral CrossRef
    20.Rose AA, Annis MG, Dong Z, Pepin F, Hallett M, Park M, et al. ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS ONE. 2010;5(8):e12093. doi:10.​1371/​journal.​pone.​0012093 .PubMed PubMedCentral CrossRef
    21.Qian X, Mills E, Torgov M, LaRochelle WJ, Jeffers M. Pharmacologically enhanced expression of GPNMB increases the sensitivity of melanoma cells to the CR011-vcMMAE antibody-drug conjugate. Mol Oncol. 2008;2(1):81–93. doi:10.​1016/​j.​molonc.​2008.​02.​002 .PubMed CrossRef
    22.Gehrig SM, van der Poel C, Sayer TA, Schertzer JD, Henstridge DC, Church JE, et al. Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature. 2012;484(7394):394–8. doi:10.​1038/​nature10980 .PubMed CrossRef
    23.Miyabara EH, Martin JL, Griffin TM, Moriscot AS, Mestril R. Overexpression of inducible 70-kDa heat shock protein in mouse attenuates skeletal muscle damage induced by cryolesioning. Am J Physiol. 2006;290(4):C1128–38. doi:10.​1152/​ajpcell.​00399.​2005 .CrossRef
    24.Miyabara EH, Nascimento TL, Rodrigues DC, Moriscot AS, Davila WF, AitMou Y, et al. Overexpression of inducible 70-kDa heat shock protein in mouse improves structural and functional recovery of skeletal muscles from atrophy. Pflugers Arch - Eur J Physiol. 2012;463(5):733–41. doi:10.​1007/​s00424-012-1087-x .CrossRef
    25.Senf SM, Dodd SL, McClung JM, Judge AR. Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J. 2008;22(11):3836–45. doi:10.​1096/​fj.​08-110163 .PubMed CrossRef
    26.Parsell DA, Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet. 1993;27:437–96. doi:10.​1146/​annurev.​ge.​27.​120193.​002253 .PubMed CrossRef
    27.Koh TJ. Do small heat shock proteins protect skeletal muscle from injury? Exerc Sport Sci Rev. 2002;30(3):117–21.PubMed CrossRef
    28.McArdle A, Dillmann WH, Mestril R, Faulkner JA, Jackson MJ. Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J. 2004;18(2):355–7. doi:10.​1096/​fj.​03-0395fje .PubMed
    29.Paulsen G, Vissing K, Kalhovde JM, Ugelstad I, Bayer ML, Kadi F, et al. Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R844–53. doi:10.​1152/​ajpregu.​00677.​2006 .PubMed CrossRef
    30.Carmeli E, Beiker R, Maor M, Kodesh E. Increased iNOS, MMP-2, and HSP-72 in skeletal muscle following high-intensity exercise training. J Basic Clin Physiol Pharmacol. 2010;21(2):127–46.PubMed CrossRef
    31.Hirunsai M, Srikuea R, Yimlamai T. Heat stress promotes extracellular matrix remodelling via TGF-beta1 and MMP-2/TIMP-2 modulation in tenotomised soleus and plantaris muscles. Int J Hyperthermia. 2015:1–13. doi:10.​3109/​02656736.​2014.​1002019 .
    32.Senf SM, Howard TM, Ahn B, Ferreira LF, Judge AR. Loss of the inducible hsp70 delays the inflammatory response to skeletal muscle injury and severely impairs muscle regeneration. PLoS ONE. 2013;8(4):e62687. doi:10.​1371/​journal.​pone.​0062687 .PubMed PubMedCentral CrossRef
    33.Silverstein BA, Fine LJ, Armstrong TJ. Hand wrist cumulative trauma disorders in industry. Br J Ind Med. 1986;43(11):779–84.PubMed PubMedCentral
    34.Bertelli JA, Mira JC. The grasping test: a simple behavioral method for objective quantitative assessment of peripheral nerve regeneration in the rat. J Neurosci Methods. 1995;58(1–2):151–5.PubMed CrossRef
    35.Barbe MF, Elliott MB, Abdelmagid SM, Amin M, Popoff SN, Safadi FF, et al. Serum and tissue cytokines and chemokines increase with repetitive upper extremity tasks. J Orthop Res. 2008;26(10):1320–6. doi:10.​1002/​jor.​20674 .PubMed CrossRef
    36.Rani S, Barbe MF, Barr AE, Litivn J. Role of TNF alpha and PLF in bone remodeling in a rat model of repetitive reaching and grasping. J Cell Physiol. 2010;225(1):152–67. doi:10.​1002/​jcp.​22208 .PubMed PubMedCentral CrossRef
    37.Abdelmagid SM, Barbe MF, Arango-Hisijara I, Owen TA, Popoff SN, Safadi FF. Osteoactivin acts as downstream mediator of BMP-2 effects on osteoblast function. J Cell Physiol. 2007;210(1):26–37. doi:10.​1002/​jcp.​20841 .PubMed CrossRef
    38.Fedorczyk JM, Barr AE, Rani S, Gao HG, Amin M, Amin S, et al. Exposure-dependent increases in IL-1beta, substance P, CTGF, and tendinosis in flexor digitorum tendons with upper extremity repetitive strain injury. J Orthop Res. 2010;28(3):298–307. doi:10.​1002/​jor.​20984 .PubMed PubMedCentral
    39.Al-Shatti T, Barr AE, Safadi FF, Amin M, Barbe MF. Increase in inflammatory cytokines in median nerves in a rat model of repetitive motion injury. J Neuroimmunol. 2005;167(1–2):13–22. doi:10.​1016/​j.​jneuroim.​2005.​06.​013 .PubMed PubMedCentral CrossRef
    40.Song YF, Forsgren S, Yu JG, Lorentzon R, Stal PS. Effects on Contralateral Muscles after Unilateral Electrical Muscle Stimulation and Exercise. PLoS ONE. 2012;7(12):e52230. doi:10.​1371/​journal.​pone.​0052230 .PubMed PubMedCentral CrossRef
    41.Safadi FF, Xu J, Smock SL, Rico MC, Owen TA, Popoff SN. Cloning and characterization of osteoactivin, a novel cDNA expressed in osteoblasts. J Cell Biochem. 2001;84(1):12–26.PubMed CrossRef
    42.Abdelmagid SM, Barbe MF, Rico MC, Salihoglu S, Arango-Hisijara I, Selim AH, et al. Osteoactivin, an anabolic factor that regulates osteoblast differentiation and function. Exp Cell Res. 2008;314(13):2334–51. doi:10.​1016/​j.​yexcr.​2008.​02.​006 .PubMed CrossRef
    43.Abe H, Uto H, Takami Y, Takahama Y, Hasuike S, Kodama M, et al. Transgenic expression of osteoactivin in the liver attenuates hepatic fibrosis in rats. Biochem Biophys Res Commun. 2007;356(3):610–5. doi:10.​1016/​j.​bbrc.​2007.​03.​035 .PubMed CrossRef
    44.Chung JS, Sato K, Dougherty II, Cruz Jr PD, Ariizumi K. DC-HIL is a negative regulator of T lymphocyte activation. Blood. 2007;109(10):4320–7.PubMed PubMedCentral CrossRef
    45.Haralanova-Ilieva B, Ramadori G, Armbrust T. Expression of osteoactivin in rat and human liver and isolated rat liver cells. J Hepatol. 2005;42(4):565–72. doi:10.​1016/​j.​jhep.​2004.​12.​021 .PubMed CrossRef
    46.Nakamura A, Ishii A, Ohata C, Komurasaki T. Early induction of osteoactivin expression in rat renal tubular epithelial cells after unilateral ureteral obstruction. Exp Toxicol Pathol. 2007;59(1):53–9.PubMed CrossRef
    47.Onaga M, Ido A, Hasuike S, Uto H, Moriuchi A, Nagata K, et al. Osteoactivin expressed during cirrhosis development in rats fed a choline-deficient, L-amino acid-defined diet, accelerates motility of hepatoma cells. J Hepatol. 2003;39(5):779–85.PubMed CrossRef
    48.Rich JN, Shi Q, Hjelmeland M, Cummings TJ, Kuan CT, Bigner DD, et al. Bone-related genes expressed in advanced malignancies induce invasion and metastasis in a genetically defined human cancer model. J Biol Chem. 2003;278(18):15951–7. doi:10.​1074/​jbc.​M211498200 .PubMed CrossRef
    49.Frara N, Abdelmagid SM, Sondag GR, Moussa FM, Yingling VR, Owen TA, et al. Transgenic Expression of Osteoactivin/gpnmb Enhances Bone Formation In Vivo and Osteoprogenitor Differentiation Ex Vivo. J Cell Physiol. 2016 Jan;231(1):72-83. doi:10.​1002/​jcp.​25020 .
    50.Tonogai I, Takahashi M, Yukata K, Sato R, Nikawa T, Yasui N, et al. Osteoactivin attenuates skeletal muscle fibrosis after distraction osteogenesis by promoting extracellular matrix degradation/remodeling. J Pediatr Orthop B. 2015;24(2):162–9. doi:10.​1097/​BPB.​0000000000000117​ .PubMed CrossRef
    51.Kherif S, Dehaupas M, Lafuma C, Fardeau M, Alameddine HS. Matrix metalloproteinases MMP-2 and MMP-9 in denervated muscle and injured nerve. Neuropathol Appl Neurobiol. 1998;24(4):309–19.PubMed CrossRef
    52.Kherif S, Lafuma C, Dehaupas M, Lachkar S, Fournier JG, Verdiere-Sahuque M, et al. Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. Dev Biol. 1999;205(1):158–70. doi:10.​1006/​dbio.​1998.​9107 .PubMed CrossRef
    53.Urso ML, Szelenyi ER, Warren GL, Barnes BR. Matrix metalloprotease-3 and tissue inhibitor of metalloprotease-1 mRNA and protein levels are altered in response to traumatic skeletal muscle injury. Eur J Appl Physiol. 2010;109(5):963–72. doi:10.​1007/​s00421-010-1435-5 .PubMed CrossRef
    54.Guerin CW, Holland PC. Synthesis and secretion of matrix-degrading metalloproteases by human skeletal muscle satellite cells. Dev Dyn. 1995;202(1):91–9. doi:10.​1002/​aja.​1002020109 .PubMed CrossRef
    55.Gao HG, Fisher PW, Lambi AG, Wade CK, Barr-Gillespie AE, Popoff SN, et al. Increased Serum and Musculotendinous Fibrogenic Proteins following Persistent Low-Grade Inflammation in a Rat Model of Long-Term Upper Extremity Overuse. PLoS ONE. 2013;8(8):e71875. doi:10.​1371/​journal.​pone.​0071875 .PubMed PubMedCentral CrossRef
    56.Mandal M, Mandal A, Das S, Chakraborti T, Chakraborti S. Identification, purification and partial characterization of tissue inhibitor of matrix metalloproteinase-2 in bovine pulmonary artery smooth muscle. Mol Cell Biochem. 2003;254(1–2):275–87.PubMed CrossRef
    57.Massova I, Kotra LP, Fridman R, Mobashery S. Matrix metalloproteinases: structures, evolution, and diversification. FASEB J. 1998;12(12):1075–95.PubMed
    58.Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827–39. doi:10.​1161/​01.​RES.​0000070112.​80711.​3D .PubMed CrossRef
    59.Woessner Jr JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991;5(8):2145–54.PubMed
    60.Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73. doi:10.​1016/​j.​cardiores.​2005.​12.​002 .PubMed CrossRef
    61.Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84(2):649–98. doi:10.​1152/​physrev.​00031.​2003 .PubMed CrossRef
    62.Cawston TE. Proteinases and inhibitors. Br Med Bull. 1995;51(2):385–401.PubMed
    63.Murphy G, Willenbrock F, Crabbe T, O’Shea M, Ward R, Atkinson S, et al. Regulation of matrix metalloproteinase activity. Ann N Y Acad Sci. 1994;732:31–41.PubMed CrossRef
    64.Delany AM, Brinckerhoff CE. Post-transcriptional regulation of collagenase and stromelysin gene expression by epidermal growth factor and dexamethasone in cultured human fibroblasts. J Cell Biochem. 1992;50(4):400–10. doi:10.​1002/​jcb.​240500409 .PubMed CrossRef
    65.Nagase H, Woessner Jr JF. Matrix metalloproteinases. J Biol Chem. 1999;274(31):21491–4.PubMed CrossRef
    66.Overall CM, Wrana JL, Sodek J. Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. J Biol Chem. 1991;266(21):14064–71.PubMed
    67.Goetsch SC, Hawke TJ, Gallardo TD, Richardson JA, Garry DJ. Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics. 2003;14(3):261–71. doi:10.​1152/​physiolgenomics.​00056.​2003 .PubMed CrossRef
    68.Zimowska M, Brzoska E, Swierczynska M, Streminska W, Moraczewski J. Distinct patterns of MMP-9 and MMP-2 activity in slow and fast twitch skeletal muscle regeneration in vivo. Int J Dev Biol. 2008;52(2–3):307–14. doi:10.​1387/​ijdb.​072331mz .PubMed CrossRef
    69.Bellayr I, Holden K, Mu X, Pan H, Li Y. Matrix metalloproteinase inhibition negatively affects muscle stem cell behavior. Int J Clin Exp Pathol. 2013;6(2):124–41.PubMed PubMedCentral
    70.Lei HQ, Leong D, Smith LR, Barton ER. Matrix metalloproteinase 13 is a new contributor to skeletal muscle regeneration and critical for myoblast migration. Am J Physiol-Cell Ph. 2013;305(5):C529–C38. doi:10.​1152/​ajpcell.​00051.​2013 .CrossRef
    71.De Mello Malheiro OC, Giacomini CT, Justulin Jr LA, Delella FK, Dal-Pai-Silva M, Felisbino SL. Calcaneal tendon regions exhibit different MMP-2 activation after vertical jumping and treadmill running. Anat Rec (Hoboken). 2009;292(10):1656–62. doi:10.​1002/​ar.​20953 .CrossRef
    72.Kamekura S, Hoshi K, Shimoaka T, Chung U, Chikuda H, Yamada T, et al. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthr Cartil / OARS, Osteoarthritis Research Society. 2005;13(7):632–41. doi:10.​1016/​j.​joca.​2005.​03.​004 .CrossRef
    73.Pap G, Eberhardt R, Sturmer I, Machner A, Schwarzberg H, Roessner A, et al. Development of osteoarthritis in the knee joints of Wistar rats after strenuous running exercise in a running wheel by intracranial self-stimulation. Pathol Res Pract. 1998;194(1):41–7. doi:10.​1016/​S0344-0338(98)80010-1 .PubMed CrossRef
    74.Asundi KR, Rempel DM. MMP-1, IL-1beta, and COX-2 mRNA expression is modulated by static load in rabbit flexor tendons. Ann Biomed Eng. 2008;36(2):237–43. doi:10.​1007/​s10439-007-9427-2 .PubMed CrossRef
    75.Fu SC, Chan BP, Wang W, Pau HM, Chan KM, Rolf CG. Increased expression of matrix metalloproteinase 1 (MMP1) in 11 patients with patellar tendinosis. Acta Orthop Scand. 2002;73(6):658–62. doi:10.​1080/​0001647023210396​24 .PubMed CrossRef
    76.Riley G. The pathogenesis of tendinopathy. A molecular perspective. Rheumatology. 2004;43(2):131–42. doi:10.​1093/​rheumatology/​keg448 .PubMed CrossRef
    77.Hirata H, Tsujii M, Yoshida T, Imanaka-Yoshida K, Morita A, Okuyama N, et al. MMP-2 expression is associated with rapidly proliferative arteriosclerosis in the flexor tenosynovium and pain severity in carpal tunnel syndrome. J Pathol. 2005;205(4):443–50. doi:10.​1002/​path.​1709 .PubMed CrossRef
    78.Kawai Y, Matsumoto Y, Watanabe K, Yamamoto H, Satoh K, Murata M, et al. Hemodynamic forces modulate the effects of cytokines on fibrinolytic activity of endothelial cells. Blood. 1996;87(6):2314–21.PubMed
    79.Ngan P, Saito S, Saito M, Lanese R, Shanfeld J, Davidovitch Z. The interactive effects of mechanical stress and interleukin-1 beta on prostaglandin E and cyclic AMP production in human periodontal ligament fibroblasts in vitro: comparison with cloned osteoblastic cells of mouse (MC3T3-E1). Arch Oral Biol. 1990;35(9):717–25.PubMed CrossRef
    80.Archambault J, Tsuzaki M, Herzog W, Banes AJ. Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro. J Orthop Res. 2002;20(1):36–9. doi:10.​1016/​S0736-0266(01)00075-4 .PubMed CrossRef
    81.Goto K, Honda M, Kobayashi T, Uehara K, Kojima A, Akema T, et al. Heat stress facilitates the recovery of atrophied soleus muscle in rat. Jpn J Physiol. 2004;54(3):285–93.PubMed CrossRef
    82.Naito H, Powers SK, Demirel HA, Sugiura T, Dodd SL, Aoki J. Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol (1985). 2000;88(1):359–63.
    83.Locke M, Tanguay RM, Klabunde RE, Ianuzzo CD. Enhanced postischemic myocardial recovery following exercise induction of HSP 72. Am J Physiol. 1995;269(1 Pt 2):H320–5.PubMed
    84.Noble EG, Moraska A, Mazzeo RS, Roth DA, Olsson MC, Moore RL, et al. Differential expression of stress proteins in rat myocardium after free wheel or treadmill run training. J Appl Physiol (1985). 1999;86(5):1696–701.
    85.Paroo Z, Haist JV, Karmazyn M, Noble EG. Exercise improves postischemic cardiac function in males but not females: consequences of a novel sex-specific heat shock protein 70 response. Circ Res. 2002;90(8):911–7.PubMed CrossRef
    86.Ogata T, Oishi Y, Higashida K, Higuchi M, Muraoka I. Prolonged exercise training induces long-term enhancement of HSP70 expression in rat plantaris muscle. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):R1557–63. doi:10.​1152/​ajpregu.​90911.​2008 .PubMed CrossRef
    87.Sjogaard G, Zebis MK, Kiilerich K, Saltin B, Pilegaard H. Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles. BioMed Res Int. 2013;2013:984523. doi:10.​1155/​2013/​984523 .PubMed PubMedCentral CrossRef
    88.Noble EG, Shen GX. Impact of exercise and metabolic disorders on heat shock proteins and vascular inflammation. Autoimmune Dis. 2012;2012:836519. doi:10.​1155/​2012/​836519 .PubMed PubMedCentral
    89.De AK, Kodys KM, Yeh BS, Miller-Graziano C. Exaggerated human monocyte IL-10 concomitant to minimal TNF-alpha induction by heat-shock protein 27 (Hsp27) suggests Hsp27 is primarily an antiinflammatory stimulus. J Immunol. 2000;165(7):3951–8.PubMed CrossRef
    90.Wieten L, Broere F, van der Zee R, Koerkamp EK, Wagenaar J, van Eden W. Cell stress induced HSP are targets of regulatory T cells: a role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Lett. 2007;581(19):3716–22. doi:10.​1016/​j.​febslet.​2007.​04.​082 .PubMed CrossRef
    91.Cahill CM, Waterman WR, Xie Y, Auron PE, Calderwood SK. Transcriptional repression of the prointerleukin 1beta gene by heat shock factor 1. J Biol Chem. 1996;271(40):24874–9.PubMed
    92.Kim HP, Wang X, Zhang J, Suh GY, Benjamin IJ, Ryter SW, et al. Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38 beta MAPK and heat shock factor-1. J Immunol. 2005;175(4):2622–9.PubMed CrossRef
    93.Pockley AG, Calderwood SK, Multhoff G. The atheroprotective properties of Hsp70: a role for Hsp70-endothelial interactions? Cell Stress Chaperones. 2009;14(6):545–53. doi:10.​1007/​s12192-009-0113-1 .PubMed PubMedCentral CrossRef
    94.Karlmark KR, Zimmermann HW, Roderburg C, Gassler N, Wasmuth HE, Luedde T, et al. The fractalkine receptor CX(3)CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology. 2010;52(5):1769–82. doi:10.​1002/​hep.​23894 .PubMed CrossRef
  • 作者单位:Nagat Frara (1)
    Samir M. Abdelmagid (2)
    Michael Tytell (3)
    Mamta Amin (1)
    Steven N. Popoff (1)
    Fayez F. Safadi (4)
    Mary F. Barbe (1)

    1. Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
    2. Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
    3. Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
    4. Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
  • 刊物主题:Orthopedics; Rehabilitation; Rheumatology; Sports Medicine; Internal Medicine;
  • 出版者:BioMed Central
  • ISSN:1471-2474
文摘
Background Expression of the growth factor osteoactivin (OA) increases during tissue degeneration and regeneration, fracture repair and after denervation-induced disuse atrophy, concomitant with increased matrix metalloproteinases (MMPs). However, OA’s expression with repetitive overuse injuries is unknown. The aim of this study was to evaluate: 1) OA expression in an operant rat model of repetitive overuse; 2) expression of MMPs; 3) inflammatory cytokines indicative of injury or inflammation; and 4) the inducible form of heat shock protein 70 (HSPA1A/HSP72) as the latter is known to increase during metabolic stress and to be involved in cellular repair. Young adult female rats performed a high repetition negligible force (HRNF) food retrieval task for up to 6 weeks and were compared to control rats.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700