Synthesis, Characterization and Catalytic Activity of Molybdenum Oxide Nanoparticles by Albumen, Assisting Microwave Process for Dehydrogenation of 1,4-Dihydropyridines
详细信息    查看全文
  • 作者:Mahdieh Jalalian ; Faezeh Farzaneh ; Leila Jafari Foruzin
  • 关键词:MoO3 nanoparticles ; Microwave ; Albumen ; Dehydrogenation catalyst
  • 刊名:Journal of Cluster Science
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:26
  • 期:3
  • 页码:703-711
  • 全文大小:590 KB
  • 参考文献:1.A. H. Lu, E. L. Salabas, and F. Schüth (2007). Angew. Chem. Int. Ed. 46, 1222.View Article
    2.S. S. Sunu, E. Prabhu, V. Jayaraman, K. I. Gnanasekar, T. K. Seshagiri, and T. Gnanasekaran (2004). Sensors and Actuators B 101, 161.View Article
    3.M. Antonella, A. Taurino, L. Forleo, P. S. Francioso, and Michael Stalder (2006). Appl. Phys. Lett. 88, 152111.View Article
    4.C. V. Subba, Z. R. Reddy, Q. Y. Deng, Y. D. Zhu, J. Zhou, and W. Chen (2007). Appl. Phys. A 89, 995.View Article
    5.J. Wang, K. C. Rose, and C. M. Lieber (1999). J. Phys. Chem. B 103, 8405.View Article
    6.J. N. Yao, K. Hashimoto, and A. Fujishima (1992). Nature 355, 624.View Article
    7.Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima (2002). Appl. Phys. Lett. 81, 5048.View Article
    8.A. Sakakura, R. Kondo, and K. Ishihara (2005). Org. Lett. 7, 1971.View Article
    9.G. M. O’Brien, A. M. Beale, S. D. M. Jacques, T. B. Veijo Honkimaki, and B. M. Weckhuysen (2009). J. Phys. Chem. C 113, 4890.View Article
    10.X. W. Lou and H. C. Zeng (2002). Chem. Mater. 14, 4781.View Article
    11.G. A. Camcho-Bragado and M. Jose-Yacaman (2006). Appl. Phys. A 82, 19.View Article
    12.T. Xia, Q. Li, X. Liu, J. Meng, and X. Cao (2006). J. Phys. Chem. B 110, 2012.
    13.X.-K. Hu, Y.-T. Qian, Z.-T. Song, J.-R. Huang, R. Cao, and J.-Q. Xiao (2008). Chem. Mater. 20, 1527.View Article
    14.G.-R. Patzke, A. Michailovski, F. Krumeich, R. Nesper, J.-D. Grunwaldt, and A. Baiker (2004). Chem. Mater. 16, 1126.View Article
    15.S. Hu and X. Wang (2008). J. Am. Chem. Soc. 130, 8126.View Article
    16.F. Nouroozi and F. Farzaneh (2011). J. Braz. Chem. Soc. 22, 484.View Article
    17.F. Farzaneh and M. Najafi (2009). Polish. J. Chem. 83, 1523.
    18.T. Dudev and C. Lim (2000). J. Phys. Chem. B 104, 3692.View Article
    19.X. Liao, W. Lin, J. Lu, and C. Wang (2010). Tetrahedron Lett. 51, 3859.View Article
    20.F. P. Guenerich, W. R. Brian, M. Iwasaki, M. A. Sari, C. Baarnheim, and P. Berntsson (1991). J. Med. Chem. 34, 1838.View Article
    21.T. Itoh, K. Nagata, M. Okada, and A. Ohsawa (1995). Tetrahedron Lett. 36, 2269.View Article
    22.A. C. Shaikh and C. Chen (2010). Bioorg. Med. Chem. Lett. 20, 3664.View Article
    23.K. Ko and J. Y. Kim (1999). Tetrahedron Lett. 40, 3207.View Article
    24.S. P. Phanchgalle, S. M. Choudhary, S. P. Chavan, and U. R. Kalkote (2004). J. Chem. Res. 2004, 550.View Article
    25.J. J. V. Eynde, R. D. Orazio, and Y. Van Haverbeke (1994). Tetrahedron 50, 2479.View Article
    26.M. A. Zolfigol, M. Bagherzadeh, K. Niknam, F. Shirini, I. Mohammadpoor-Baltore, and A. G. Choghamarana (2006). J. Iran. Chem. Soc. 3, 73.View Article
    27.F. P. Guengrich and R. H. Bocker (1988). J. Biol. Chem. 263, 8168.
    28.B. Han, R.-F. Han, Y.-W. Ren, X.-Y. Duan, Y.-C. Xu, and W. Zhang (2011). Tetrahedron 67, 5615.View Article
    29.P. Kar and B. G. Mishra (2013). Chem. Eng. J. 223, 647.View Article
    30.H. Mirzaei and A. Davoodnia (2012). Chin. J. Catal. 33, 1502.View Article
    31.M. Litvic, M. Regovic, K. Smic, M. Lovric, and M. Filipan-Litvic (2012). Bioorg & Medi. Chem. Let. 22, 3676.View Article
    32.P. Chandrachood, T. Gadkari, N. Deshpande, and R. Kashalkar (2012). J. Iran. Chem. Soc. 9, 47.View Article
    33.L. M. Sanchez, A. G. Sathicq, G. T. Baronetti, H. J. Thomas, and G. P. Romanelli (2014). Catal. Lett. 144, 172.View Article
    34.G. J.-J. Chen, J. W. Mc Donald, and W. E. Newton (1976). Inorg. Chem. 15, 2612.View Article
    35.M. A. Zolfigol and M. Safaiee (2004). Syn. Lett. 5, 827.
    36.H. Adibi and A.-R. Hajipour (2007). Bioorg. Med. Chem. Lett. 17, 1008.View Article
    37.R. S. Raghuvanshi and K. N. Singh (2008). Indian J. Chem. 47B, 1735.
    38.P. Kumar, A. Kumar, and K. Hussain (2012). Ultrason. Sonochem. 19, 729.View Article
    39.M. Kanthimathi, A. Dhathathreyan, and B. U. Nair (2004). Mater. Lett. 58, 2914.View Article
    40.M. Niederberger, F. Krumeich, H. J. Muhr, M. Muller, and R. Nesper (2001). J. Mater. Chem. 11, 1941.View Article
    41.N. A. Dhas and A. Gedanken (1997). J. Phys. Chem. B 101, 9495.View Article
  • 作者单位:Mahdieh Jalalian (1)
    Faezeh Farzaneh (1)
    Leila Jafari Foruzin (1)

    1. Department of Chemistry, Alzahrah University, P.O.Box 1993891176, Vanak, Tehran, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Inorganic Chemistry
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8862
文摘
Molybdenum oxide (MoO3) nanoparticles were synthesized via microwave method with albumen as a bio template followed by calcination at 400?°C. The obtained product was characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, FT-IR and UV–Vis techniques. The XRD results showed that whereas the prepared sample was amorphous up to 300?°C, a crystalline phase of orthorhombic symmetry with amourphous phase was obtained at 400?°C. The thermogravimetric analysis data showed the thermal stability of molybdenum oxide. The MoO3 nanoparticles was found to catalyze aromatization of 1,4-dihydropyridines efficiently with 100?% conversion and selectivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700