Biobutanol production from C5/C6 carbohydrates integrated with pervaporation: experimental results and conceptual plant design
详细信息    查看全文
  • 作者:Wouter Van Hecke ; Pieter Vandezande…
  • 关键词:Bioprocess design ; Biobutanol ; Process integration ; Product inhibition ; In situ product recovery ; Pervaporation
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:43
  • 期:1
  • 页码:25-36
  • 全文大小:1,392 KB
  • 参考文献:1.de Vrije T, Budde M, van der Wal H, Claassen PAM, López-Contreras AM (2013) “In situ” removal of isopropanol, butanol and ethanol from fermentation broth by gas stripping. Bioresour Technol 137:153–159PubMed CrossRef
    2.Dubreuil MF, Vandezande P, Van Hecke W, Porto-Carrero WJ, Dotremont CT (2013) Study on ageing/fouling phenomena and the effect of upstream nanofiltration on in situ product recovery of n-butanol through poly [1-(trimethylsilyl)-1-propyne] pervaporation membranes. J Membr Sci 447:134–143CrossRef
    3.Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49(6):639–648CrossRef
    4.Groot WJ, Luyben KC (1987) Continuous production of butanol from a glucose/xylose mixture with an immobilized cell system coupled to pervaporation. Biotechnol Lett 9(12):867–870CrossRef
    5.Gu Y, Li J, Zhang L, Chen J, Niu L, Yang Y et al (2009) Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. J Biotechnol 143(4):284–287PubMed CrossRef
    6.Harvey BG, Meylemans HA (2011) The role of butanol in the development of sustainable fuel technologies. J Chem Tech Biotechnol 86(1):2–9CrossRef
    7.Henry JD, Prudich ME, Eykamp W, Hatton TA, Johnston KP, Lemert RM et al (1997) Alternative separation processes. In: Green D, Perry R (eds) Perry’s chemical engineers’ handbook. McGraw Hill, New York
    8.Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88(6):1999–2012CrossRef
    9.Liu G, Wei W, Jin W (2013) Pervaporation membranes for biobutanol production. ACS Sustain Chem Eng 2(4):546–560CrossRef
    10.Lu C, Dong J, Yang ST (2013) Butanol production from wood pulping hydrolysate in an integrated fermentation–gas stripping process. Bioresour Technol 143:467–475PubMed CrossRef
    11.Néel J (1997) Pervaporation. Lavoisier, Paris
    12.Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone–butanol–ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83(3):415–423PubMed CrossRef
    13.Novy V, Krahulec S, Wegleiter M, Müller G, Longus K, Klimacek M et al (2014) Process intensification through microbial strain evolution: mixed glucose–xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 7(1):1–12CrossRef
    14.Ounine K, Petitdemange H, Raval G, Gay R (1985) Regulation and butanol inhibition of d -xylose and d -glucose uptake in Clostridium acetobutylicum. Appl Environ Microbiol 49(4):874–878PubMed PubMedCentral
    15.Pfromm PH, Boadu VA, Nelson R, Vadlani PM (2010) Bio-butanol vs. bio-ethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenerg 34:515–524CrossRef
    16.Qureshi N, Blaschek HP (1999) Fouling studies of a pervaporation membrane with commercial fermentation media and fermentation broth of hyper-butanol-producing Clostridium beijerinckii BA101. Sep Sci Technol 34(14):2803–2815CrossRef
    17.Qureshi N, Singh V, Liu S, Ezeji TC, Saha BC, Cotta MA (2014) Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): production of butanol from corn stover using Clostridium beijerinckii P260. Bioresour Technol 154:222–228PubMed CrossRef
    18.Qureshi N, Li XL, Hughes S, Saha BC, Cotta MA (2006) Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol Prog 22(3):673–680PubMed CrossRef
    19.Qureshi N, Saha B, Cotta M (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30(6):419–427PubMed CrossRef
    20.Uyttebroek M, Van Hecke W, Vanbroekhoven K (2015) Sustainability metrics of 1-butanol. Catal Today 239:7–10CrossRef
    21.Van der Bruggen B, Luis P (2014) Pervaporation as a tool in chemical engineering: a new era? Curr Opin Chem Eng 4:47–53CrossRef
    22.Van Hecke W, Hofmann T, De Wever H (2013) Pervaporative recovery of ABE during continuous cultivation: enhancement of performance. Bioresour Technol 129:421–429PubMed CrossRef
    23.Van Hecke W, Kaur G, De Wever H (2014) Advances in in situ product recovery (ISPR) in whole cell biotechnology during the last decade. Biotechnol Adv 32(7):1245–1255PubMed CrossRef
    24.Van Hecke W, Vandezande P, Claes S, Vangeel S, Beckers H, Diels L et al (2012) Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes. Bioresour Technol 111:368–377PubMed CrossRef
    25.Vane LM (2005) A review of pervaporation for product recovery from biomass fermentation processes. J Chem Tech Biotech 80(6):603–629CrossRef
    26.Xin F, Wu YR, He J (2014) Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol 80(15):4771–4778PubMed PubMedCentral CrossRef
  • 作者单位:Wouter Van Hecke (1)
    Pieter Vandezande (1)
    Marjorie Dubreuil (1)
    Maarten Uyttebroek (1)
    Herman Beckers (1)
    Heleen De Wever (1)

    1. Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400, Mol, Belgium
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Chemistry
    Biotechnology
    Genetic Engineering
    Biochemistry
    Bioinformatics
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1476-5535
文摘
In this study, a simulated lignocellulosic hydrolyzate was used in a continuous two-stage fermentor setup for production of acetone, butanol and ethanol. An organophilic pervaporation unit was coupled to the second fermentor. The dilution rate in the first fermentor was kept constant at 0.109 h−1, while the dilution rate in the second fermentor was gradually decreased from 0.056 to 0.020 h−1. Glucose was completely consumed, while 61 % of the xylose was consumed at the lowest dilution rate, leading to an overall solvent productivity of 0.65 g L−1 h−1 and a high concentration of 185 g kg−1 solvents in the permeate in the last fermentation zone during 192 h. Based on the experimental results, a process integrated with organophilic pervaporation was conceptually designed and compared with a base-case. Chemcad simulations indicate an energy reduction of ~50 % when organophilic pervaporation is used. This study also demonstrates significant reductions in process flows and energy consumption by the use of organophilic pervaporation as in situ product recovery technology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700