Effects of Tidal Flooding on Juvenile Willows
详细信息    查看全文
  • 作者:Heike Markus-Michalczyk ; Dieter Hanelt ; Kai Jensen
  • 关键词:Tidal freshwater forested wetlands ; Tidal flooding tolerance ; Willows ; Sea level rise
  • 刊名:Estuaries and Coasts
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:39
  • 期:2
  • 页码:397-405
  • 全文大小:439 KB
  • 参考文献:Amlin N.A., and S.B. Rood. 2001. Inundation tolerances of riparian willows and cottonwoods. Journal of the American Water Resources Association 37: 1709–1720.CrossRef
    Baldwin A.H., and I.A. Mendelssohn. 1998. Response of two oligohaline marsh communities to lethal and nonlethal disturbance. Oecologia 116: 543–555.CrossRef
    Baldwin A.H., A. Barendregt, and D.F. Whigham. 2009. Tidal freshwater wetlands, an introduction to the ecosystem. In Tidal freshwater wetlands, eds. A. Barendregt, D.F. Whigham, and A.H. Baldwin, 1–10. Leiden: Backhuys Publishers.
    Bendix J., and C.R. Hupp. 2000. Hydrological and geomorphological impacts on riparian plant communities. Hydrological Processes 14: 2977–2990.CrossRef
    Blom C.W.P.M., and L.A.C.J. Voesenek. 1996. Flooding: the survival strategies of plants. Tree II: RO. 7.
    Borsje B.W., B.K. van Wesenbeeck, F. Dekker, P. Paalvast, T.J. Bouma, M.M. van Katwijk, and M.B. de Vries. 2011. How ecological engineering can serve in coastal protection. Ecological Engineering 37: 113–122.CrossRef
    Butzeck C., A. Eschenbach, A. Gröngröft, K. Hansen, S. Nolte, and K. Jensen. 2014. Sediment deposition and accretion rates in tidal marshes are highly variable along estuarine salinity and flooding gradients. Estuaries and Coasts 38: 434–450.CrossRef
    Chmelař J., and W. Meusel. 1986. Die weiden Europas. Wittenberg Lutherstadt: Ziemsen Verlag.
    Colmer T.D., and O. Pedersen. 2008. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytologist 177: 918–926 8.CrossRef
    Dennison W.C., R.J. Orth, K.A. Moore, J.C. Stevensen, V. Carter, S. Kollar, P.W. Bergstrom, and A. Batiuk. 1993. Assessing water quality with submersed aquatic vegetation. Bioscience 43: 86–94.CrossRef
    De Simone O., E. Müller, W.J. Junk, and W. Schmidt. 2002. Adaptations of central amazon tree species to prolonged flooding: root morphology and leaf longevity. Plant Biology 4: 515–522.CrossRef
    Doody J.P. 2004. ‘Coastal squeeze’—an historical perspective. Journal of Coastal Conservation 10: 129–138.CrossRef
    Ellenberg H., and C. Leuschner. 2010. Vegetation Mitteleuropas mit den Alpen, 6 edn. Stuttgart: Ulmer.
    Francis R.A., and A.M. Gurnell. 2006. Initial establishment of vegetative fragments within the active zone of a braided gravel-bed river (River Tagliamento, NE Italy). Wetlands 26: 641–648.CrossRef
    Ganju N.K., and D.H. Schoellhamer. 2010. Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply. Estuaries and Coasts 33: 15–29.CrossRef
    Gönnert G., H. von Storch, J. Jensen, S. Thumm, T. Wahl, and R. Weise. 2009. Der Meeresspiegelanstieg. Ursachen, Tendenzen und Risikobewertung. Die Küste 76: 225–256.
    Hanelt D., and M.Y. Roleda. 2009. UVB radiation may ameliorate photoinhibition in specific shallow-water tropical marine macrophytes. Aquatic Botany 91: 6–12.CrossRef
    Hanelt D., C. Wiencke, and W. Nultsch. 1997. Influence of UV radiation on the photosynthesis of Arctic macroalgae in the field. Journal of Photochemistry and Photobiology B: Biology 38: 40–47.CrossRef
    IPCC. 2013. In Climate change 2013: The physical science basis—working group I contribution to the fifth assessment report of the intergovernmental panel on climate change, eds. T.F. Stocker, D. Qin, G.K. Plattner, M.M.B. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Switzerland: IPCC.
    Jennerjahn T.C., and S.B. Mitchell. 2013. Pressures, stresses, shocks and trends in estuarine ecosystems—an introduction and synthesis. Estuarine, Coastal and Shelf Science 130: 1–8.CrossRef
    Karrenberg S., P.J. Edwards, and J. Kollmann. 2002. The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology 47: 733–748.CrossRef
    Kirwan M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37(23): 1–5.CrossRef
    Krauss K.W., K.L. McKee, C.E. Lovelock, D.R. Cahoon, N. Saintilan, R. Reef, and L. Chen. 2014. How mangrove forests adjust to rising sea level. New Phytologist 202: 19–34.CrossRef
    Lautenschlager-Fleury D. 1994. Die Weiden von mittel- und Nordeuropa: Bestimmungsschlüssel und Artbeschreibung für die Gattung Salix L. Basel: Birkhäuser.CrossRef
    Li S., S.R. Pezeshki, and D.F. Shields. 2006. Partial flooding enhances aeration in adventitious roots of black willow (Salix nigra) cuttings. Journal of Plant Physiology 163: 619–628.CrossRef
    Luo F.-L., K.A. Nagel, B. Zeng, U. Schurr, and S. Matsubara. 2009. Photosynthetic acclimation is important for post-submergence recovery of photosynthesis and growth in two riparian species. Annals of Botany 104: 1435–1444.CrossRef
    Markus-Michalczyk H., D. Hanelt, K. Ludewig, D. Müller, B. Schröter, and K. Jensen. 2014. Salt intrusion in tidal wetlands: European willow species tolerate oligohaline conditions. Estuarine, Coastal and Shelf Science 136: 35–42.CrossRef
    Mitsch W.J., and J.G. Gosselink. 2000. Wetlands, 3 edn. New York: 920 ppWiley.
    Möller I., M. Kudella, F. Rupprecht, T. Spencer, M. Paul, B.K. van Wesenbeeck, G. Wolters, K. Jensen, T.J. Bouma, and S. Schimmels. 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience 7: 727–731.CrossRef
    Mommer L., and E. Visser. 2005. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Annals of Botany 96: 581–589.CrossRef
    Mosner E., S. Schneider, B. Lehmann, and I. Leyer. 2011. Hydrological prerequisites for optimum habitats of riparian Salix communities—identifying suitable reforestation sites. Applied Vegetation Science 14: 367–377.CrossRef
    Neubauer S.C., and C.B. Craft. 2009. Global change and tidal freshwater wetlands: scenarios and impacts. In Tidal freshwater wetlands, eds. A. Barendregt, D.F. Whigham, and A.H. Baldwin, 253–263. Leiden: Backhuys Publishers.
    Parolin P., A.C. Oliviera, M.T.F. Piedade, F. Wittmann, and W.J. Junk. 2002. Pioneer trees in Amazonian floodplains: three key species form monospecific stands in different habitats. Folia Geobotanica 37: 225–238.CrossRef
    Pedersen O., S.M. Rich, and T.D. Colmer. 2009. Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. The Plant Journal 58: 147–156.CrossRef
    Pendleton L., D.C. Donato, B.C. Murray, S. Crooks, W.A. Jenkins, S. Sifleet, C. Craft, J.W. Fourqurean, J.B. Kauffmann, N. Marba’, P. Megonigal, E. Pidgeon, D. Herr, D. Gordon, and A. Baldera. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PloS One 7(9): e43542.CrossRef
    Raabe E. 1986. Die Gliederung der Ufervegetation der Elbe unterhalb von Hamburg. Mitteilungen zum Natur- und Umweltschutz Hamburg 2: 117–141
    Radtke A., E. Mosner, and I. Leyer. 2012. Vegetative reproduction capacities of floodplain willows—cutting response to competition and biomass loss. Plant Biology 14(2): 257–264.CrossRef
    Ramsar 2014. The Ramsar Convention on Wetlands. http://​www.​ramsar.​org/​.​
    Sand-Jensen K., and J. Borum. 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.CrossRef
    Schmid B. 1992. Phenotypic variation in plants. Evolutionary Trends in Plants 6: 45–60.
    Schreiber U., U. Schliwa, and W. Bilger. 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research 10: 51–62.CrossRef
    STATISTICA for Windows. 2009. Version 9.0. Tulsa, USA. (StatSoft).
    Struyf E., J. Sander, P. Meire, K. Jensen, and A. Barendregt. 2009. Plant communities of European tidal freshwater wetlands. In Tidal freshwater wetlands, eds. A. Barendregt, D.F. Whigham, and A.H. Baldwin, 1–10. Leiden: Backhuys Publishers.
    Temmerman S., G. Govers, S. Warte, and P. Meire. 2004. Modelling estuarine variations in tidal marsh sedimentation: response to changing sea level and suspended sediment concentrations. Marine Geology 212: 1–9.CrossRef
    Timoney K.P., and G. Argus. 2006. Willows, water regime, and recent cover change in the Peace–Athabasca Delta. Ecoscience 13(3): 308–317.CrossRef
    Weston N.B. 2014. Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuaries and Coasts 37: 1–23.CrossRef
    Winkel A., T.D. Colmer, and O. Pedersen. 2011. Leaf gas films of Spartina anglica enhance rhizome and root oxygen during tidal submergence. Plant, Cell and Environment 34: 2083–2092.CrossRef
    Zander, M. 2000. Untersuchungen zur Identifizierung ausgewählter Vertreter der Gattung Salix L. im NO-deutschen Tiefland, unter besonderer Berücksichtigung des Salix-repens-Komplexes. Mitteilungen zur floristischen Kartierung in Sachsen-Anhalt, Halle.
  • 作者单位:Heike Markus-Michalczyk (1)
    Dieter Hanelt (2)
    Kai Jensen (1)

    1. Applied Plant Ecology, Department Biology, University of Hamburg, Ohnhorststraße 18, 22609, Hamburg, Germany
    2. Cell Biology and Phycology, Department of Biology, University of Hamburg, Ohnhorststraße 18, 22609, Hamburg, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Ecology
    Geosciences
    Environmental Management
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1559-2731
文摘
Tidal wetlands are affected by sea level rise. In the tidal freshwater stretches of estuaries in the temperate zone, willows (Salix spp.) form tidal freshwater forests above the mean high water level. Willows tolerance to prolonged periodic flooding in riverine systems is well documented, whereas effects of tidal flooding on willows are largely unknown. Flooding stress may play a major role in regeneration failure of willows in tidal forest stands along estuarine shores, and juvenile willows might be specifically affected by partial or total submergence. To assess the tolerance of juvenile willows to tidal flooding, we conducted a mesocosm experiment with cuttings from Salix alba and Salix viminalis, which are both characteristic species for tidal freshwater forests in Europe. Cuttings originating from either fresh or brackish tidal forest stands were grown under four tidal treatments with up to a tidal flooding of 60 cm. A general tolerance to a tidal flooding of 60 cm was observed in chlorophyll fluorescence, growth rates, and biomass production in both willow species. Overall, S. alba showed higher leaf and shoot growth, whereas S. viminalis produced more biomass. S. alba with brackish origin performed worst with increasing tidal flooding, suggesting a possible pre-weakening due to stressful site conditions in tidal wetlands at the estuarine brackish stretch. This study demonstrates that juvenile willows of S. alba and S. viminalis tolerate tidal flooding of up to 60 cm. It is concluded that tidal inundation acts as a stress by causing submergence and soil anaerobiosis, but may also act as a subsidy by reestablishing aerobic conditions and thus maintaining willows performance. Therefore, we suggest investigations on Salix tidal flooding tolerance and possible effects of willows on tidal wetland accretion under estuarine field conditions. Keywords Tidal freshwater forested wetlands Tidal flooding tolerance Willows Sea level rise

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700