Construction and Validation of Binary Phase Diagram for Amorphous Solid Dispersion Using Flory–Huggins Theory
详细信息    查看全文
  • 作者:Krishna Bansal ; Uttam Singh Baghel ; Seema Thakral
  • 刊名:AAPS PharmSciTech
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:17
  • 期:2
  • 页码:318-327
  • 全文大小:410 KB
  • 参考文献:1.Lipinski CA, Lombard F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.CrossRef PubMed
    2.Che E, Zheng X, Sun C, Chang D, Jiang T, Wang S. Drug nanocrystals: a state of art formulation strategy for preparing the poorly water-soluble drugs. Asian J Pharm Sci. 2012;7(2):85–95.
    3.Kaushal AM, Gupta P, Bansal AK. Amorphous drug delivery systems: molecular aspects, design and performance. Crit Rev Ther Drug Carrier Syst. 2004;21:133–93.CrossRef PubMed
    4.Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86:1–12.CrossRef PubMed
    5.Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48:27–42.CrossRef PubMed
    6.Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–302.CrossRef PubMed
    7.Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.CrossRef PubMed
    8.Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88:1058–66.CrossRef PubMed
    9.Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231:131–44.CrossRef PubMed
    10.Teja SB, Patil SP, Shete G, Patel S, Bansal AK. Drug-excipient behavior in polymeric amorphous solid dispersions. J Exp Food Chem. 2013;4(3):70–94.
    11.Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev. 2012;64(5):396–421.CrossRef PubMed
    12.Kakumanu VK, Bansal AK. Enthalpy relaxation studies of celecoxib amorphous mixtures. Pharm Res. 2002;19:1873–8.CrossRef PubMed
    13.Pajula K, Taskinen M, Lehto V, Ketolainen J, Korhonen O. Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory-Huggins interaction parameter and phase diagram. Mol Pharm. 2010;7(3):795–804.CrossRef PubMed
    14.Qian F, Huang J, Hussain M. Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99:2941–7.CrossRef PubMed
    15.Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953.
    16.Huggins ML. Thermodynamic properties of solutions of long-chain compounds. Ann N Y Acad Sci. 1942;43(1):1–32.CrossRef
    17.Hildebrand J, Scott R. Solubility of non-electrolytes. 3rd ed. New York: Reinhold; 1950.
    18.Fedors RF. A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci. 1974;14:147–54.CrossRef
    19.Van Krevelen DW, TeNijenhuis K. Properties of polymers. 4th ed. Oxford: Elsevier Scientific Publication; 2009.
    20.Thakral S, Thakral NK. Prediction of Drug–polymer miscibility through the use of solubility parameter based Flory–Huggins interaction parameter and the experimental validation: PEG as model polymer. J Pharm Sci. 2013;7(102):2254–63.CrossRef
    21.Nishi T, Wang T. Melting-point depression and kinetic effects of cooling on crystallization in poly (vinylidene fluoride) poly(methyl methacrylate) mixtures. Macromolecules. 1975;8:909–15.CrossRef
    22.Marsac P, Shamblin S, Taylor LS. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res. 2006;23:2417–26.CrossRef PubMed
    23.Marsac P, Li T, Taylor LS. Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res. 2009;26:139–51.CrossRef PubMed
    24.Koningsveld R, Solc K. Liquid-liquid phase-separation in multicomponent polymer systems: influence of molar-mass distribution on shadow curve and phase-volume ratio. Collect Czech Chem Commun. 1993;58:2305–20.CrossRef
    25.Solc K, Koningsveld R. Liquid-liquid phase separation in multicomponent polymer systems, blends of two polydisperse polymers. Collect Czech Chem Commun. 1995;60:1689–718.CrossRef
    26.Tian Y, Booth J, Meehan E, Jones DS, Li S, Andrews GP. Construction of drug–polymer thermodynamic phase diagrams using Flory–Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol Pharm. 2012;10(1):236–48.CrossRef PubMed
    27.Lin D, Huang YA. Thermal analysis method to predict the complete phase diagram of drug-polymer solid dispersions. Int J Pharm. 2010;399:109–15.CrossRef PubMed
    28.Zhao Y, Inbar P, Chokshi H, Malick AW, Choi D. Prediction of the thermal phase diagram of amorphous solid dispersions by Flory–Huggins theory. J Pharm Sci. 2011;100:3196–207.CrossRef PubMed
    29.Tian B, Wang X, Zhang Y, Zhang K, Tang X. Theoretical prediction of a phase diagram of solid dispersion. Pharm Res. 2014: 1–12.
    30.Gordon M, Taylor JS. Ideal copolymers and the second‐order transitions of synthetic rubbers. I. non‐crystalline copolymers. J Appl Chem. 1952;2(9):493–500.CrossRef
    31.Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27:48–9.CrossRef PubMed
    32.Forster A, Hempenstall J, Tucker I, Rades T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm. 2001;226:147–61.CrossRef PubMed
    33.Martin SC. Phase transitions in aqueous atmospheric particles. Chem Rev. 2000;100:3403–53.CrossRef PubMed
    34.Olabisi O, Robeson L, Shaw M. Polymer-polymer miscibility. San Diego: Academic Press, Inc.; 1979.
    35.Tantishaiyakul V, Kaewnopparat N, Ingkatawornwong S. Properties of solid dispersions of piroxicam in polyvinylpyrrolidone. Int J Pharm. 1999;181(2):143–51.CrossRef PubMed
  • 作者单位:Krishna Bansal (1)
    Uttam Singh Baghel (2)
    Seema Thakral (1) (3)

    1. GVM College of Pharmacy, Sonipat, Haryana, 131001, India
    2. Khalsa College of Pharmacy, Amritsar, Punjab, 143001, India
    3. College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, 55455, USA
  • 刊物主题:Pharmacology/Toxicology; Biotechnology; Biochemistry, general; Pharmacy;
  • 出版者:Springer US
  • ISSN:1530-9932
文摘
Drug–polymer miscibility is one of the fundamental prerequisite for the successful design and development of amorphous solid dispersion formulation. The purpose of the present work is to provide an example of the theoretical estimation of drug–polymer miscibility and solubility on the basis of Flory–Huggins (F–H) theory and experimental validation of the phase diagram. The F–H interaction parameter, χ d-p, of model system, aceclofenac and Soluplus, was estimated by two methods: by melting point depression of drug in presence of different polymer fractions and by Hildebrand and Scott solubility parameter calculations. The simplified relationship between the F–H interaction parameter and temperature was established. This enabled us to generate free energy of mixing (ΔG mix) curves for varying drug–polymer compositions at different temperatures and finally the spinodal curve. The predicted behavior of the binary system was evaluated through X-ray diffraction, differential scanning calorimetry, and in vitro dissolution studies. The results suggest possibility of employing interaction parameter as preliminary tool for the estimation of drug–polymer miscibility.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700