The development of fluconazole resistance in Candida albicans ᾿an example of microevolution of a fungal pathogen
详细信息    查看全文
  • 作者:Joachim Morschhäuser
  • 关键词:drug resistance ; fitness costs ; gain ; of ; function mutation ; genome alterations ; loss of heterozygosity
  • 刊名:Journal of Microbiology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:54
  • 期:3
  • 页码:192-201
  • 全文大小:676 KB
  • 参考文献:Alarco, A.M. and Raymond, M. 1999. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J. Bacteriol. 181, 700–708.PubMedCentral PubMed
    Alby, K. and Bennett, R.J. 2009. Stress-induced phenotypic switching in Candida albicans. Mol. Biol. Cell. 20, 3178–3191.PubMedCentral CrossRef PubMed
    Andes, D., Forrest, A., Lepak, A., Nett, J., Marchillo, K., and Lincoln, L. 2006. Impact of antimicrobial dosing regimen on evolution of drug resistance in vivo: fluconazole and Candida albicans. Antimicrob. Agents Chemother. 50, 2374–2383.PubMedCentral CrossRef PubMed
    Angiolella, L., Stringaro, A.R., De Bernardis, F., Posteraro, B., Bonito, M., Toccacieli, L., Torosantucci, A., Colone, M., Sanguinetti, M., Cassone, A., et al. 2008. Increase of virulence and its phenotypic traits in drug-resistant strains of Candida albicans. Antimicrob. Agents Chemother. 52, 927–936.PubMedCentral CrossRef PubMed
    Asai, K., Tsuchimori, N., Okonogi, K., Perfect, J.R., Gotoh, O., and Yoshida, Y. 1999. Formation of azole-resistant Candida albicans by mutation of sterol 14-demethylase P450. Antimicrob. Agents Chemother. 43, 1163–1169.PubMedCentral PubMed
    Berman, J. and Hadany, L. 2012. Does stress induce (para)sex? Implications for Candida albicans evolution. Trends Genet. 28, 197–203.PubMedCentral CrossRef PubMed
    Calvet, H.M., Yeaman, M.R., and Filler, S.G. 1997. Reversible fluconazole resistance in Candida albicans: a potential in vitro model. Antimicrob. Agents Chemother. 41, 535–539.PubMedCentral PubMed
    Chau, A.S., Gurnani, M., Hawkinson, R., Laverdiere, M., Cacciapuoti, A., and McNicholas, P.M. 2005. Inactivation of sterol Δ5,6-desaturase attenuates virulence in Candida albicans. Antimicrob. Agents Chemother. 49, 3646–3651.PubMedCentral CrossRef PubMed
    Coste, A., Selmecki, A., Forche, A., Diogo, D., Bougnoux, M.E., d’Enfert, C., Berman, J., and Sanglard, D. 2007. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot. Cell 6, 1889–1904.PubMedCentral CrossRef PubMed
    Coste, A., Turner, V., Ischer, F., Morschhäuser, J., Forche, A., Selmecki, A., Berman, J., Bille, J., and Sanglard, D. 2006. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172, 2139–2156.PubMedCentral CrossRef PubMed
    Coste, A.T., Crittin, J., Bauser, C., Rohde, B., and Sanglard, D. 2009. Functional analysis of cis- and trans-acting elements of the Candida albicans CDR2 promoter with a novel promoter reporter system. Eukaryot. Cell 8, 1250–1267.PubMedCentral CrossRef PubMed
    Coste, A.T., Karababa, M., Ischer, F., Bille, J., and Sanglard, D. 2004. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 3, 1639–1652.PubMedCentral CrossRef PubMed
    Cruz, M.C., Goldstein, A.L., Blankenship, J.R., Del Poeta, M., Davis, D., Cardenas, M.E., Perfect, J.R., McCusker, J.H., and Heitman, J. 2002. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J. 21, 546–559.PubMedCentral CrossRef PubMed
    Dunkel, N., Blaβ, J., Rogers, P.D., and Morschhäuser, J. 2008a. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol. Microbiol. 69, 827–840.PubMedCentral CrossRef PubMed
    Dunkel, N., Liu, T.T., Barker, K.S., Homayouni, R., Morschhäuser, J., and Rogers, P.D. 2008b. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot. Cell 7, 1180–1190.PubMedCentral CrossRef PubMed
    Favre, B., Didmon, M., and Ryder, N.S. 1999. Multiple amino acid substitutions in lanosterol 14a-demethylase contribute to azole resistance in Candida albicans. Microbiology 145, 2715–2725.CrossRef PubMed
    Flowers, S.A., Barker, K.S., Berkow, E.L., Toner, G., Chadwick, S.G., Gygax, S.E., Morschhäuser, J., and Rogers, P.D. 2012. Gain-offunction mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot. Cell 11, 1289–1299.PubMedCentral CrossRef PubMed
    Flowers, S.A., Colon, B., Whaley, S.G., Schuler, M.A., and Rogers, P.D. 2015. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob. Agents Chemother. 59, 450–460.PubMedCentral CrossRef PubMed
    Forche, A., Abbey, D., Pisithkul, T., Weinzierl, M.A., Ringstrom, T., Bruck, D., Petersen, K., and Berman, J. 2011. Stress alters rates and types of loss of heterozygosity in Candida albicans. mBio 2, e00129–11.PubMedCentral CrossRef PubMed
    Forche, A., Alby, K., Schaefer, D., Johnson, A.D., Berman, J., and Bennett, R.J. 2008. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 6, e110.PubMedCentral CrossRef PubMed
    Ford, C.B., Funt, J.M., Abbey, D., Issi, L., Guiducci, C., Martinez, D.A., Delorey, T., Li, B.Y., White, T.C., Cuomo, C., et al. 2015. The evolution of drug resistance in clinical isolates of Candida albicans. Elife 4, e00662.CrossRef PubMed
    Franz, R., Kelly, S.L., Lamb, D.C., Kelly, D.E., Ruhnke, M., and Morschhäuser, J. 1998. Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob. Agents Chemother. 42, 3065–3072.PubMedCentral PubMed
    Franz, R., Ruhnke, M., and Morschhäuser, J. 1999. Molecular aspects of fluconazole resistance development in Candida albicans. Mycoses 42, 453–458.CrossRef PubMed
    Harrison, B.D., Hashemi, J., Bibi, M., Pulver, R., Bavli, D., Nahmias, Y., Wellington, M., Sapiro, G., and Berman, J. 2014. A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole. PLoS Biol. 12, e1001815.PubMedCentral CrossRef PubMed
    Hayama, K., Ishibashi, H., Ishijima, S.A., Niimi, K., Tansho, S., Ono, Y., Monk, B.C., Holmes, A.R., Harding, D.R., Cannon, R.D., et al. 2012. A D-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model. FEMS Microbiol. Lett. 328, 130–137.CrossRef PubMed
    Heilmann, C.J., Schneider, S., Barker, K.S., Rogers, P.D., and Morschhäuser, J. 2010. An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans. Antimicrob. Agents Chemother. 54, 353–359.PubMedCentral CrossRef PubMed
    Hoot, S.J., Smith, A.R., Brown, R.P., and White, T.C. 2011. An A643V amino acid substitution in Upc2p contributes to azole resistance in well-characterized clinical isolates of Candida albicans. Antimicrob. Agents Chemother. 55, 940–942.PubMedCentral CrossRef PubMed
    Huang, G., Srikantha, T., Sahni, N., Yi, S., and Soll, D.R. 2009. CO2 regulates white-to-opaque switching in Candida albicans. Curr. Biol. 19, 330–334.PubMedCentral CrossRef PubMed
    Huang, G., Yi, S., Sahni, N., Daniels, K.J., Srikantha, T., and Soll, D.R. 2010. N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog. 6, e1000806.PubMedCentral CrossRef PubMed
    Huang, M., McClellan, M., Berman, J., and Kao, K.C. 2011. Evolutionary dynamics of Candida albicans during in vitro evolution. Eukaryot. Cell 10, 1413–1421.PubMedCentral CrossRef PubMed
    Jain, P., Akula, I., and Edlind, T. 2003. Cyclic AMP signaling pathway modulates susceptibility of Candida species and Saccharomyces cerevisiae to antifungal azoles and other sterol biosynthesis inhibitors. Antimicrob. Agents Chemother. 47, 3195–3201.PubMedCentral CrossRef PubMed
    Kakeya, H., Miyazaki, Y., Miyazaki, H., Nyswaner, K., Grimberg, B., and Bennett, J.E. 2000. Genetic analysis of azole resistance in the Darlington strain of Candida albicans. Antimicrob. Agents Chemother. 44, 2985–2990.PubMedCentral CrossRef PubMed
    Kelly, S.L., Lamb, D.C., and Kelly, D.E. 1999a. Y132H substitution in Candida albicans sterol 14a-demethylase confers fluconazole resistance by preventing binding to haem. FEMS Microbiol. Lett. 180, 171–175.PubMed
    Kelly, S.L., Lamb, D.C., Kelly, D.E., Manning, N.J., Loeffler, J., Hebart, H., Schumacher, U., and Einsele, H. 1997. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol Δ5,6-desaturation. FEBS Lett. 400, 80–82.CrossRef PubMed
    Kelly, S.L., Lamb, D.C., Loeffler, J., Einsele, H., and Kelly, D.E. 1999b. The G464S amino acid substitution in Candida albicans sterol 14a-demethylase causes fluconazole resistance in the clinic through reduced affinity. Biochem. Biophys. Res. Commun. 262, 174–179.CrossRef PubMed
    Kusch, H., Biswas, K., Schwanfelder, S., Engelmann, S., Rogers, P.D., Hecker, M., and Morschhäuser, J. 2004. A proteomic approach to understanding the development of multidrug-resistant Candida albicans strains. Mol. Genet. Genomics 271, 554–565.CrossRef PubMed
    Lamb, D.C., Kelly, D.E., White, T.C., and Kelly, S.L. 2000. The R467K amino acid substitution in Candida albicans sterol 14a- demethylase causes drug resistance through reduced affinity. Antimicrob. Agents Chemother. 44, 63–67.PubMedCentral CrossRef PubMed
    Lohberger, A., Coste, A.T., and Sanglard, D. 2014. Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence. Eukaryot. Cell 13, 127–142.PubMedCentral CrossRef PubMed
    MacPherson, S., Akache, B., Weber, S., De Deken, X., Raymond, M., and Turcotte, B. 2005. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob. Agents Chemother. 49, 1745–1752.PubMedCentral CrossRef PubMed
    Mansfield, B.E., Oltean, H.N., Oliver, B.G., Hoot, S.J., Leyde, S.E., Hedstrom, L., and White, T.C. 2010. Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi. PLoS Pathog. 6, e1001126.PubMedCentral CrossRef PubMed
    Marr, K.A., Lyons, C.N., Ha, K., Rustad, T.R., and White, T.C. 2001. Inducible azole resistance associated with a heterogeneous phenotype in Candida albicans. Antimicrob. Agents Chemother. 45, 52–59.PubMedCentral CrossRef PubMed
    Marr, K.A., Lyons, C.N., Rustad, T.R., Bowden, R.A., and White, T.C. 1998. Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR. Antimicrob. Agents Chemother. 42, 2584–2589.PubMedCentral PubMed
    Martel, C.M., Parker, J.E., Bader, O., Weig, M., Gross, U., Warrilow, A.G., Rolley, N., Kelly, D.E., and Kelly, S.L. 2010. Identification and characterization of four azole-resistant erg3 mutants of Candida albicans. Antimicrob. Agents Chemother. 54, 4527–4533.PubMedCentral CrossRef PubMed
    Martinez, M., Lopez-Ribot, J.L., Kirkpatrick, W.R., Bachmann, S.P., Perea, S., Ruesga, M.T., and Patterson, T.F. 2002. Heterogeneous mechanisms of azole resistance in Candida albicans clinical isolates from an HIV-infected patient on continuous fluconazole therapy for oropharyngeal candidosis. J. Antimicrob. Chemother. 49, 515–524.CrossRef PubMed
    Miller, M.G. and Johnson, A.D. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110, 293–302.CrossRef PubMed
    Miyazaki, T., Miyazaki, Y., Izumikawa, K., Kakeya, H., Miyakoshi, S., Bennett, J.E., and Kohno, S. 2006. Fluconazole treatment is effective against a Candida albicans erg3/erg3 mutant in vivo despite in vitro resistance. Antimicrob. Agents Chemother. 50, 580–586.PubMedCentral CrossRef PubMed
    Miyazaki, Y., Geber, A., Miyazaki, H., Falconer, D., Parkinson, T., Hitchcock, C., Grimberg, B., Nyswaner, K., and Bennett, J.E. 1999. Cloning, sequencing, expression and allelic sequence diversity of ERG3 (C-5 sterol desaturase gene) in Candida albicans. Gene 236, 43–51.CrossRef PubMed
    Morio, F., Pagniez, F., Lacroix, C., Miegeville, M., and Le Pape, P. 2012. Amino acid substitutions in the Candida albicans sterol Δ5,6-desaturase (Erg3p) confer azole resistance: characterization of two novel mutants with impaired virulence. J. Antimicrob. Chemother. 67, 2131–2138.CrossRef PubMed
    Morschhäuser, J., Barker, K.S., Liu, T.T., Blaβ- Warmuth, J., Homayouni, R., and Rogers, P.D. 2007. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog. 3, e164.PubMedCentral CrossRef PubMed
    Morschhäuser, J., Michel, S., and Staib, P. 1999. Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol. Microbiol. 32, 547–556.CrossRef PubMed
    Perea, S., Lopez-Ribot, J.L., Kirkpatrick, W.R., McAtee, R.K., Santillan, R.A., Martinez, M., Calabrese, D., Sanglard, D., and Patterson, T.F. 2001. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 45, 2676–2684.PubMedCentral CrossRef PubMed
    Ramírez-Zavala, B., Reuβ, O., Park, Y.N., Ohlsen, K., and Morschhäuser, J. 2008. Environmental induction of white-opaque switching in Candida albicans. PLoS Pathog. 4, e1000089.PubMedCentral CrossRef PubMed
    Rustad, T.R., Stevens, D.A., Pfaller, M.A., and White, T.C. 2002. Homozygosity at the Candida albicans MTL locus associated with azole resistance. Microbiology 148, 1061–1072.CrossRef PubMed
    Saidane, S., Weber, S., De Deken, X., St-Germain, G., and Raymond, M. 2006. PDR16-mediated azole resistance in Candida albicans. Mol. Microbiol. 60, 1546–1562.CrossRef PubMed
    Sanglard, D., Ischer, F., Koymans, L., and Bille, J. 1998. Amino acid substitutions in the cytochrome P-450 lanosterol 14a-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob. Agents Chemother. 42, 241–253.PubMedCentral CrossRef PubMed
    Sanglard, D., Ischer, F., Marchetti, O., Entenza, J., and Bille, J. 2003a. Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol. Microbiol. 48, 959–976.CrossRef PubMed
    Sanglard, D., Ischer, F., Monod, M., and Bille, J. 1996. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob. Agents Chemother. 40, 2300–2305.PubMedCentral PubMed
    Sanglard, D., Ischer, F., Monod, M., and Bille, J. 1997. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143, 405–416.CrossRef PubMed
    Sanglard, D., Ischer, F., Parkinson, T., Falconer, D., and Bille, J. 2003b. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob. Agents Chemother. 47, 2404–2412.PubMedCentral CrossRef PubMed
    Sanglard, D., Kuchler, K., Ischer, F., Pagani, J.L., Monod, M., and Bille, J. 1995. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob. Agents Chemother. 39, 2378–2386.PubMedCentral CrossRef PubMed
    Sasse, C., Dunkel, N., Schäfer, T., Schneider, S., Dierolf, F., Ohlsen, K., and Morschhäuser, J. 2012. The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans. Mol. Microbiol. 86, 539–556.CrossRef PubMed
    Schillig, R. and Morschhäuser, J. 2013. Analysis of a fungus-specific transcription factor family, the Candida albicans zinc cluster proteins, by artificial activation. Mol. Microbiol. 89, 1003–1017.CrossRef PubMed
    Schubert, S., Barker, K.S., Znaidi, S., Schneider, S., Dierolf, F., Dunkel, N., Aid, M., Boucher, G., Rogers, P.D., Raymond, M., et al. 2011. Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans. Antimicrob. Agents Chemother. 55, 2212–2223.PubMedCentral CrossRef PubMed
    Schubert, S., Rogers, P.D., and Morschhäuser, J. 2008. Gain-offunction mutations in the transcription factor MRR1 are responsible for overexpression of the MDR1 efflux pump in fluconazole- resistant Candida dubliniensis strains. Antimicrob. Agents Chemother. 52, 4274–4280.PubMedCentral CrossRef PubMed
    Schulz, B., Weber, K., Schmidt, A., Borg-von Zepelin, M., and Ruhnke, M. 2011. Difference in virulence between fluconazole- susceptible and fluconazole-resistant Candida albicans in a mouse model. Mycoses 54, e522530.CrossRef
    Selmecki, A., Forche, A., and Berman, J. 2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313, 367–370.PubMedCentral CrossRef PubMed
    Selmecki, A., Gerami-Nejad, M., Paulson, C., Forche, A., and Berman, J. 2008. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 68, 624–641.CrossRef PubMed
    Selmecki, A.M., Dulmage, K., Cowen, L.E., Anderson, J.B., and Berman, J. 2009. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 5, e1000705.PubMedCentral CrossRef PubMed
    Silver, P.M., Oliver, B.G., and White, T.C. 2004. Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot. Cell 3, 1391–1397.PubMedCentral CrossRef PubMed
    Talibi, D. and Raymond, M. 1999. Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae. J. Bacteriol. 181, 231–240.PubMedCentral PubMed
    Tsao, S., Rahkhoodaee, F., and Raymond, M. 2009. Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob. Agents Chemother. 53, 1344–1352.PubMedCentral CrossRef PubMed
    Vale-Silva, L.A., Coste, A.T., Ischer, F., Parker, J.E., Kelly, S.L., Pinto, E., and Sanglard, D. 2012. Azole resistance by loss of function of the sterol Δ5,6-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence. Antimicrob. Agents Chemother. 56, 1960–1968.PubMedCentral CrossRef PubMed
    Wang, Y., Liu, J.Y., Shi, C., Li, W.J., Zhao, Y., Yan, L., and Xiang, M.J. 2015. Mutations in transcription factor Mrr2p contribute to fluconazole resistance in clinical isolates of Candida albicans. Int. J. Antimicrob. Agents 46, 552–559.CrossRef PubMed
    White, T.C. 1997a. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob. Agents Chemother. 41, 1482–1487.PubMedCentral PubMed
    White, T.C. 1997b. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14a demethylase in Candida albicans. Antimicrob. Agents Chemother. 41, 1488–1494.PubMedCentral PubMed
    White, T.C., Marr, K.A., and Bowden, R.A. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11, 382–402.PubMedCentral PubMed
    Wirsching, S., Michel, S., and Morschhäuser, J. 2000. Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol. Microbiol. 36, 856–865.CrossRef PubMed
    Znaidi, S., De Deken, X., Weber, S., Rigby, T., Nantel, A., and Raymond, M. 2007. The zinc cluster transcription factor Tac1p regulates PDR16 expression in Candida albicans. Mol. Microbiol. 66, 440–452.CrossRef PubMed
    Znaidi, S., Weber, S., Al-Abdin, O.Z., Bomme, P., Saidane, S., Drouin, S., Lemieux, S., De Deken, X., Robert, F., and Raymond, M. 2008. Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance. Eukaryot. Cell 7, 836–847.PubMedCentral CrossRef PubMed
  • 作者单位:Joachim Morschhäuser (1)

    1. Institute for Molecular Infection Biology, University of Würzburg, D-97080, Würzburg, Germany
  • 刊物主题:Microbiology;
  • 出版者:Springer Netherlands
  • ISSN:1976-3794
文摘
The yeast Candida albicans is a member of the microbiota in the gastrointestinal and urogenital tracts of most healthy persons, but it can also cause symptomatic infections, especially in immunocompromised patients. During the life-long association with its human host, C. albicans generates genetically altered variants that are better adapted to changes in their environment. A prime example of this microevolution is the development of resistance to the commonly used drug fluconazole, which inhibits ergosterol biosynthesis, during antimycotic therapy. Fluconazole resistance can be caused by mutations in the drug target, by changes in the sterol biosynthesis pathway, and by gain-of-function mutations in transcription factors that result in the constitutive upregulation of ergosterol biosynthesis genes and multidrug efflux pumps. Fluconazole also induces genomic rearrangements that result in gene amplification and loss of heterozygosity for resistance mutations, which further increases drug resistance. These genome alterations may affect extended chromosomal regions and have additional phenotypic consequences. A striking case is the loss of heterozygosity for the mating type locus MTL in many fluconazole-resistant clinical isolates, which allows the cells to switch to the mating-competent opaque phenotype. This, in turn, raises the possibility that sexual recombination between different variants of an originally clonal, drug-susceptible population may contribute to the generation of highly fluconazole-resistant strains with multiple resistance mechanisms. The gain-of-function mutations in transcription factors, which result in deregulated gene expression, also cause reduced fitness. In spite of this, many clinical isolates that contain such mutations do not exhibit fitness defects, indicating that they have overcome the costs of drug resistance with further evolution by still unknown mechanisms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700