High strain rate behavior, transformation-induced plasticity and fracture toughness characterization of cast and additionally tempered Fe85Cr4Mo8V2C1 alloy manufactured using a rapid solidification technique
详细信息    查看全文
  • 作者:M. Rüssel (1) Markus.Ruessel@iwt.tu-freiberg.de
    S. Martin (2)
    L. Krüger (1)
    W. Kreuzer (3)
  • 刊名:Journal of Materials Science
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:47
  • 期:19
  • 页码:6915-6928
  • 全文大小:1.2 MB
  • 参考文献:1. Consemüller K, Hribernik B, Schneider G (1996) In: Proceedings of the 4th International Conference on Tooling, Ruhr-University, Bochum, p 3
    2. Imbert CAC, Mc Queen HJ (2001) Mater Sci Eng A 313:88
    3. Jimenez JA, Frommeyer G, Acosta P, Ruano OA (1995) Mater Sci Eng A 202:94
    4. Brar NS, Hari Manoj Simha C (2000) J Phys IV 10:611
    5. Kunze HD, Meyer LW (1986) In: Murr LE, Staudhammer KP, Meyers MA (eds) Metallurgical applications of shock-wave and high-strain rate phenomena. Dekker, New York, p 481
    6. Hirotsu Y, Nagakura S (1972) Acta Metall 20(4):645
    7. Haberling E, Schruff I (1985) Thyssen Edelstahl Technische Berichte 11(2):99
    8. Kupalova IK (1991) Met Sci Heat Treat 33(10):721
    9. Kulmburg A (1998) Pract Metallogr 35(4):180
    10. Roberts GA, Krauss G, Kennedy RL (1998) Tool steels. ASM International, Materials Park
    11. Karag?z S, Andrén HO (1992) Z Metallkd 83(6):386
    12. Stiller K, Svensson LE, Howell PR, Wang R, Andrén HO, Dunlop GL (1984) Acta Metall 32(9):1457
    13. Fischmeister HF, Karag?z S, Andrén HO (1988) Acta Metall 36(4):817
    14. Wang Rong, Dunlop GL (1984) Acta Metall 32(10):1591
    15. Wang R, Andrén HO, Wisell H, Dunlop GL (1992) Acta Metall Mater 40(7):1727
    16. Berry G, Kadhim Al-Tornachi MJ (1977) Met Technol 4:289
    17. Lou B, Averbach BL (1983) Metall Trans A 14:1889
    18. Horton SA, Child HC (1983) Met Technol 10:245
    19. Leskovsek V, Ule B, Rodic A (1997) Mater Manuf Process 12(1):71
    20. Leskovsek V, Sustarsic B, Jutrisa G (2006) J Mater Process Technol 178:328
    21. Wright CS, Wronski AS, Rebbeck MM (1984) Met Technol 11:181
    22. Kim C, Johnson AR, Hosford WF (1982) Metall Trans A 13:1595
    23. Muro P, Gimenez S, Iturriza I (2002) Scripta Mater 46(5):369
    24. Lee SC, Worzala FJ (1981) Metall Trans A 12:1477
    25. Pacyna J (1992) Steel Res 63(11):500
    26. Kokosza A, Pacyna J (2008) Arch Mater Sci Eng 31(2):87
    27. Blaha J, Werner EA, Liebfahrt W (2000) Second International Conference on Processing Materials for Properties, San Francisco, p 623
    28. Leskov?ek V (2009) Mater Manuf Process 24:603
    29. Okorafor OE (1987) Mater Sci Technol 3:118
    30. Pacyna J, Mazur A (1986) Steel Res 57(11):577
    31. Olsson LR, Fischmeister HF (1978) Powder Metall 1:13
    32. Kulmburg A, Schindler A, Fauland HP, Hackl G (1994) H?rterei-Technische-Mitteilung 49:31
    33. Kühn U, Mattern N, Gemming T, Siegel U, Werniewicz K, Eckert J (2007) Superior mechanical properties of FeCrMoVC. Appl Phys Lett 90(26):261901
    34. Schlieter A, Kühn U, Eckert J, Seifert HJ (2010) J Mater Res 25:1164
    35. Hufenbach J, Kühn U, Krüger L, Wendrock H, Eckert J (2011) Steel Res Int 82:51
    36. Hufenbach J, Kohlar S, Kühn U, Giebeler L, Eckert J (2012) J Mater Sci 47:267. doi:
    37. Krüger L, Rüssel M, Martin S, Kreuzer W (2012) Eng Fract Mech (accepted)
    38. Lutterotti L, Matthies S, Wenk HR (1999) IUCr Newslett CPD 21:14
    39. Simek D, Rafaja D, Motylenko M, Klemm V, Schreiber G, Brethfeld A, Lehmann G (2008) Steel Res Int 79(10):800
    40. Gray GT (2000) In: Kuhn H, Medlin D (eds) ASM Handbook. Mechanical testing and evaluation, vol 8. ASM International, Materials Park, OH, p 462
    41. DIN EN ISO 12737: Metallic materials—determination of the plane-strain fracture toughness, German version, Deutsches Institut für Normung e.V., Beuth Verlag, Berlin, 2010
    42. Vegard L (1921) Z Phys A: Hadrons Nucl 5:17
    43. Dixon PR, Parry DJ (1991) Thermal softening effects in type 224 carbon steel. J Phys IV 1(C3):85
    44. Vural M, Rittel D, Ravichandran G (2003) Metall Mater Trans A 34:2873
    45. Meyer L, Herzig N, Halle T, Hahn F, Krüger L, Staudhammer K (2007) J Mater Process Technol 182:319
    46. Rüssel M, Martin S, Krüger L, Kreuzer W (2011) High strain rate behavior and transformation-induced plasticity of a high-strength FeCrMoVWC alloy manufactured by rapid solidification technique, Metall Mater Trans A. doi:10.1007/s11661-012-1180-y
    47. Hansen N (1985) Metall Mater Trans A 16:2167
    48. Hansen N (1990) Mater Sci Technol 6:1039
    49. Spear KE, Leitnaker JM (1969) High Temp Sci 1:404, ICSD #619049
    50. Fries RJ, Kempter CP (1960) Anal Chem 32:1898, ICSD#43669
    51. Mendez J, Gasc C (1977) Int J Fract 13:365
  • 作者单位:1. Faculty of Materials Science and Technology, Institute of Materials Engineering, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599 Freiberg, Germany2. Faculty of Materials Science and Technology, Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599 Freiberg, Germany3. Bundeswehr Research Institute for Materials, Fuels and Lubricants (WIWeB), Institutsweg 1, 85435 Erding, Germany
  • ISSN:1573-4803
文摘
This study focuses on the characterization of the microstructures of an FeCrMoVC alloy in two states (an as-cast and a heat-treated state) as well as the compressive strain rate-dependent material and fracture toughness behavior. Both microstructures consist of martensite, retained austenite and complex carbides. Tempering results in a transformation of retained austenite into martensite, the precipitation of fine alloy carbides, and diffusion processes. High yield stresses, flow and ultimate compressive strength values at a relatively good deformability were measured. The yield and flow stresses at the onset of deformation are higher for the heat-treated state due to higher martensitic phase fractions and fine precipitations of alloy carbides respectively. Compressive deformation causes a strain-induced transformation of retained austenite to α′-martensite. Hence, both high-strength alloys are TRIP-assisted steels (TRansformation-Induced Plasticity). However, the martensitic transformation is more pronounced in the as-cast state due to higher phase fractions of retained austenite already in the initial state. Examinations of strained microstructures showed decreased crystallite sizes with increasing deformation. It is assumed that, during plastic deformation, the amount of low angle grain boundaries increases while the incremental formation of α′-martensite leads to decreased crystallite size. In general, lower microstrains were determined in the heat-treated state as a consequence of stress relaxation during tempering. In comparison to commercially available tool steels, the determined fracture toughness K Ic of both variants revealed relatively high fracture toughness values. It was found that the lower shelf of K Ic is already reached at room temperature. Higher loading rates [(K)\dot] \dot{K} resulted in lower dynamic fracture toughness K Id values. Notch fracture toughness K A measurements indicate that the critical notch tip radii of the examined materials are slightly smaller than 0.09 mm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700