Effects of Stress Distribution at the Contact Interface on Static Friction Force: Numerical Simulation and Model Experiment
详细信息    查看全文
  • 作者:Satoru Maegawa ; Fumihiro Itoigawa ; Takashi Nakamura
  • 关键词:Static friction ; Static friction coefficient ; Friction mechanisms ; Tangential loading history
  • 刊名:Tribology Letters
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:62
  • 期:2
  • 全文大小:2,361 KB
  • 参考文献:1.Nakano, K.: Two dimensionless parameters controlling the occurrence of stick–slip motion in a 1-DOF system with Coulomb friction. Tribol. Lett. 24, 91–98 (2006)CrossRef
    2.Nakano, K., Maegawa, S.: Safety-design criteria of sliding systems for preventing friction-induced vibration. J. Sound Vib. 324, 539–555 (2009)CrossRef
    3.Nakano, K., Maegawa, S.: Stick–slip in sliding systems with tangential contact compliance. Tribol. Int. 42, 1771–1780 (2009)CrossRef
    4.Maegawa, S., Nakano, K.: Mechanism of stick–slip associated with Schallamach waves. Wear 268, 924–930 (2010)CrossRef
    5.Maegawa, S., Itoigawa, F., Nakamura, T.: Dynamics in sliding friction of soft adhesive elastomer: Schallamach waves as a stress-relaxation mechanism. Tribol. Int. 96, 23–30 (2015)CrossRef
    6.Persson, B.N.J.: Sliding Friction: Physical Principles and Applications, 2nd edn. Springer, Heidelberg (2000)CrossRef
    7.Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)CrossRef
    8.Varenberg, M., Gorb, S.: Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21, 483–486 (2009)CrossRef
    9.Popov, V.L.: Contact Mechanics and Friction: Physical Principals and Applications. Springer, Heidelberg (2010)CrossRef
    10.Maegawa, S., Suzuki, A., Nakano, K.: Precursors of global slip in a longitudinal line contact under non-uniform normal loading. Tribol. Lett. 38, 313–323 (2010)CrossRef
    11.Scheibert, J., Dysthe, D.K.: Role of friction-induced torque in stick–slip motion. Europhys. Lett. 92, 54001 (2010)CrossRef
    12.David, O.B., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)CrossRef
    13.Murarash, B., Itovich, Y., Varenberg, M.: Tuning elastomer friction by hexagonal surface patterning. Soft Matter 7, 5553–5557 (2011)CrossRef
    14.Lorenz, B., Persson, B.N.J.: On the origin of why static or breakloose friction is larger than kinetic friction, and how to reduce it: the role of aging, elasticity and sequential interfacial slip. J. Phys. Condens. Matter 24, 225008 (2012)CrossRef
    15.Brormann, K., Barel, I., Urbakh, M., Bennewitz, R.: Friction on a microstructured elastomer surface. Tribol. Lett. 50, 3–15 (2013)CrossRef
    16.Otsuki, M., Matsukawa, H.: Systematic breakdown of Amonton’s law of friction for an elastic object locally obeying Amonton’s law. Sci. Rep. 3, 1586 (2013)CrossRef
    17.Ozaki, S., Inanobe, C., Nakano, K.: Finite element analysis of precursors to macroscopic stick–slip motion in elastic materials: analysis of friction test as a boundary value problem. Tribol. Lett. 55, 151–163 (2014)CrossRef
    18.Varenberg, M., Kligerman, Y.: Elimination of stick–slip motion in sliding of split or rough surface. Tribol. Lett. 53, 395–399 (2014)CrossRef
    19.Katano, Y., Nakano, K., Otsuki, M., Matsukawa, H.: Novel friction law for the static friction force based on local precursor slipping. Sci. Rep. 4, 06324 (2015)CrossRef
    20.Maegawa, S., Itoigawa, F., Nakamura, T.: A role of friction-induced torque on sliding friction of rubber materials. Tribol. Int. 93, 182–189 (2016)CrossRef
    21.Huthings, I.M.: Tribology: Friction and Wear of Engineering Materials. Edward Arnold, London (1992)
    22.Maegawa, S., Itoigawa, F., Nakamura, T.: Effect of normal load on friction coefficient for sliding contact between rough rubber surface and rigid smooth plane. Tribol. Int. 92, 335–343 (2015)CrossRef
    23.Dieterich, J.H., Kilgore, B.D.: Direct observation of frictional contacts: new insights for state-dependent properties. Pure. Appl. Geophys. 143, 283–302 (1994)CrossRef
    24.Bureau, L., Baumberger, T., Caroli, C.: Rheological aging and rejuvenation in solid friction contacts. Eur. Phys. J. E 8, 331–337 (2002)CrossRef
    25.Lorenz, B., Krick, B.A., Rodriguez, N., Sawyer, W.G., Mangiagalli, P., Persson, B.N.J.: Static or breakloose friction for lubricated contacts: the role of surface roughness and dwetting. J. Phys. Condens. Matter 25, 445013 (2013)CrossRef
    26.Chateauminois, A., Fretigny, C.: Local friction at a sliding interface between an elastomer and a rigid spherical probe. Eur. Phys. J. E 27, 221–227 (2008)CrossRef
    27.Prevost, A., Scheibert, J., Debregeas, G.: Probing the micromechanics of a multi-contact interface at the onset of frictional sliding. Eur. Phys. J. E 36, 17–29 (2013)CrossRef
    28.Tuononen, A.J.: Digital image correlation to analysis stick–slip behavior of tyre tread block. Tribol. Int. 69, 70–76 (2013)CrossRef
    29.Maegawa, S., Suzuki, A., Nakano, K.: Optical measurements of real contact area and tangential contact stiffness in rough contact interface between an adhesive elastomer and a glass plate. J. Adv. Mech. Des. Syst. Manufact. 9, JAMDSM0069 (2015)
    30.Kammer, D.S., Yastrebov, V.A., Spijker, P., Molinari, J.-F.: On the propagation of slip fronts at frictional interfaces. Tribol. Lett. 48, 27–32 (2012)CrossRef
    31.Bar-Sinai, Y., Brener, E.A., Bouchbinder, E.: Slow rupture of frictional interfaces. Geophys. Res. Lett. 39, L03308 (2012)CrossRef
    32.Bouchbinder, E., Brener, E.A., Barel, I., Urbakh, M.: Slow cracklike dynamics at the onset of frictional sliding. Phys. Rev. Lett. 107, 235501 (2011)CrossRef
    33.Bar-Sinai, Y., Spatschek, R., Brener, E.A., Bouchbinder, E.: Instabilities at frictional interfaces: creep patches, nucleation, and rupture fronts. Phys. Rev. E 88, 060403 (2013)CrossRef
    34.Rubinstein, S.M., Cohen, G., Fineberg, J.: Contact area measurements reveal loading-history dependence of static friction. Phys. Rev. Lett. 96, 256103 (2006)CrossRef
    35.David, O.B., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330, 211–214 (2010)CrossRef
  • 作者单位:Satoru Maegawa (1) (2)
    Fumihiro Itoigawa (1)
    Takashi Nakamura (1)

    1. Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
    2. Department of Mechanical and Aerospace Engineering, Tottori University, 4-101 Minami Koyama, Tottori, 680-8553, Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Tribology, Corrosion and Coatings
    Surfaces and Interfaces and Thin Films
    Theoretical and Applied Mechanics
    Physical Chemistry
    Nanotechnology
  • 出版者:Springer Netherlands
  • ISSN:1573-2711
文摘
This study develops a simplified model that can simulate the dynamics of a split contact interface at the transition from static to kinetic friction. The model has a contact interface formed by multiple contacting points connected to a rigid base via a spring. From a numerical analysis of this model, the effect of the stress distribution at the contact interface on the level of static friction force was investigated. Consequently, it was found that the existence of the stop-restart motion can act to increase the macroscopic (apparent) static friction force. Thus, the numerical analysis demonstrated that the macroscopic static friction coefficient could be changed without varying the local static friction coefficient. The type of tangential loading history, i.e., the existence of stop-restart motion, is an important factor for characterizing the level of the static friction force. In other words, this implies that we can adjust the level of the macroscopic static friction coefficient without changes to the local static friction. Furthermore, the above numerical prediction was confirmed by a model experiment focusing on the sliding contact interface of an object built from separated rubber blocks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700