Solutions of the sine-Gordon equation with a variable amplitude
详细信息    查看全文
  • 作者:E. L. Aero ; A. N. Bulygin ; Yu. V. Pavlov
  • 关键词:sine ; Gordon equation ; wave equation ; eikonal equation ; functionally invariant solution ; ansatz
  • 刊名:Theoretical and Mathematical Physics
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:184
  • 期:1
  • 页码:961-972
  • 全文大小:1,388 KB
  • 参考文献:1.J. Frenkel and T. Kontorova, Acad. Sci. USSR J. Phys., 1, 137-49 (1939).MathSciNet MATH
    2.E. L. Aero and A. N. Bulygin, Mech. Solids, 42, 807-22 (2007).CrossRef
    3.P. Guéret, IEEE Trans. Magnetics, 11, 751-54 (1975).CrossRef ADS
    4.R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Acad. Press, London (1982).MATH
    5.P. G. de Gennes, The Physics of Liquid Crystals, Clarendon, Oxford (1974).
    6.K. Lonngren and A. C. Scott, eds., Solitons in Action, Acad. Press, eds (1978).MATH
    7.W. L. McMillan, Phys. Rev. B, 14, 1496-502 (1976).CrossRef ADS
    8.V. G. Bykov, Nonlinear Wave Processes in Geologic Media [in Russian], Dal’nauka, Vladivostok (2000).
    9.P. L. Chebyshev, Uspekhi Mat. Nauk, 1, No. 2(12), 38-2 (1946).MATH
    10.A. S. Davydov, Solitons in Bioenergetics [in Russian], Naukova Dumka, Kiev (1986).MATH
    11.L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka, Moscow (1986)
    11a.L. A. Takhtadzhyan and L. D. Faddeev, English transl.: Hamiltonian Methods in the Theory of Solitons, Springer, Berlin (1987).MATH
    12.L. A. Takhtadzhyan and L. D. Faddeev, Theor. Math. Phys., 21, 1046-057 (1974).CrossRef
    13.I. A. Garagash, V. N. Nikolaevskiy, Computational Continuum Mechanics, 2, 44-6 (2009).CrossRef
    14.H. Bateman, Electrical and Optical Wave Motion Cambridge Univ. Press, London (1914).
    15.A. R. Forsyth, Messenger Math., 27, 99-18 (1898).
    16.V. Smirnoff and S. Soboleff, “Sur une méthode nouvelle dans le problême plan des vibrations élastiques,-in: Trudy seismologichecskogo in-ta [Works of the Seismological Institute], No. 20, Acad. Sci. USSR, Leningrad (1932).
    17.V. Smirnoff and S. Soboleff, C. R. Acad. Sci. Paris, 194, 1437-439 (1932).
    18.S. Sobolev, “Functionally invariant solutions of wave equation,-in: Travaux Inst. Physico-Math. Stekloff, Vol. 5, Acad. Sci. USSR, Leningrad (1934), pp. 259-.
    19.S. L. Sobolev, Selected Works [in Russian], Vol. 1, Equations of Mathematical Physics: Computational Mathematics and Cubature Formulas, Sobolev Inst. Math., Siberian Branch, Russ. Acad. Sci., Novosibirsk (2003)
    19a.S. L. Sobolev, Op. cit., Vol. 2, Functional Analysis: Partial Differential Equations, Sobolev Inst. Math., Siberian Branch, Russ. Acad. Sci., Novosibirsk (2006).
    20.N. P. Erugin, Uchenye zap. Leningr. un-ta., 15, 101-34 (1948).
    21.M. M. Smirnov, Dokl. AN SSSR, 67, 977-80 (1949).MATH
    22.E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Theor. Math. Phys., 158, 313-19 (2009).CrossRef MathSciNet MATH
    23.E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Nelineinyi Mir, 7, 513-17 (2009).
    24.E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Differ. Equ., 47, 1442-452 (2011).CrossRef MathSciNet MATH
    25.E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Appl. Math. Comput., 223, 160-66 (2013).CrossRef MathSciNet
    26.C. G. J. Jacobi, J. Reine Angew. Math., 36, 113-34 (1848)CrossRef MathSciNet MATH
    26a.C. G. J. Jacobi, “über eine particul?re L?sung der partiellen Differentialgleichung \(\frac{{{\partial ^2}V}}{{\partial {x^2}}} + \frac{{{\partial ^2}V}}{{\partial {y^2}}} + \frac{{{\partial ^2}V}}{{\partial {z^2}}}\) ,-in: C. G. J. Jacobi’s Gesammelte Werke (C. G. J. Jacobi and C. W. Borchardt, eds.), Vol. 2, Verlag von G.Reimer, Berlin(1882), pp. 191-.
  • 作者单位:E. L. Aero (1)
    A. N. Bulygin (1)
    Yu. V. Pavlov (1)

    1. Institute of Problems in Mechanical Engineering, RAS, St. Petersburg, Russia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Applications of Mathematics
    Russian Library of Science
  • 出版者:Springer New York
  • ISSN:1573-9333
文摘
We propose methods for constructing functionally invariant solutions u(x, y, z, t) of the sine-Gordon equation with a variable amplitude in 3+1 dimensions. We find solutions u(x, y, z, t) in the form of arbitrary functions depending on either one (α(x, y, z, t)) or two (α(x, y, z, t), β(x, y, z, t)) specially constructed functions. Solutions f(α) and f(α, β) relate to the class of functionally invariant solutions, and the functions α(x, y, z, t) and β(x, y, z, t) are called the ansatzes. The ansatzes (α, β) are defined as the roots of either algebraic or mixed (algebraic and first-order partial differential) equations. The equations defining the ansatzes also contain arbitrary functions depending on (α, β). The proposed methods allow finding u(x, y, z, t) for a particular, but wide, class of both regular and singular amplitudes and can be easily generalized to the case of a space with any number of dimensions. Keywords sine-Gordon equation wave equation eikonal equation functionally invariant solution ansatz

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700