GCPII modulates oxidative stress and prostate cancer susceptibility through changes in methylation of RASSF1, BNIP3, GSTP1 and 详细信息    查看全文
  • 作者:Shree Divyya ; Shaik Mohammad Naushad ; P. V. L. N. Murthy…
  • 关键词:Glutamate carboxypeptidase II ; BCL2/adenovirus E1B 19?kDa protein ; interacting protein 3 ; Ras association domain family 1 isoform A ; Extracellular superoxide dismutase ; Prostate cancer ; Haplotypes
  • 刊名:Molecular Biology Reports
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:40
  • 期:10
  • 页码:5541-5550
  • 全文大小:599KB
  • 参考文献:1. Amin KS, Banerjee PP (2012) The cellular functions of RASSF1A and its inactivation in prostate cancer. J Carcinog 11:13 CrossRef
    2. Kuzmin I, Gillespie JW, Protopopov A, Geil L, Dreijerink K, Yang Y, Vocke CD et al (2002) The RASSF1A tumor suppressor gene is inactivated in prostate tumors and suppresses growth of prostate carcinoma cells. Cancer Res 62:3498-502
    3. Liu L, Yoon JH, Dammann R, Pfeifer GP (2002) Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene 21:6835-840 CrossRef
    4. Maruyama R, Toyooka S, Toyooka KO, Virmani AK, Z?chbauer-Müller S, Farinas AJ et al (2002) Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res 8:514-19
    5. Ahmed H (2010) Promoter methylation in prostate cancer and its application for the early detection of prostate cancer using serum and urine samples. Biomark Cancer 2:17-3 CrossRef
    6. Daniūnait? K, Berezniakovas A, Jankevi?ius F, Laurinavi?ius A, Lazutka JR, Jarmalait? S (2011) Frequent methylation of RASSF1 and RARB in urine sediments from patients with early stage prostate cancer. Medicina (Kaunas) 47(3):147-53
    7. Sunami E, Shinozaki M, Higano CS, Wollman R, Dorff TB, Tucker SJ et al (2009) Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin Chem 55(3):559-67 CrossRef
    8. Yoon HY, Kim YW, Kang HW, Kim WT, Yun SJ, Lee SC et al (2012) DNA methylation of GSTP1 in human prostate tissues: pyrosequencing analysis. Korean J Urol 53(3):200-05 CrossRef
    9. Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL (2001) HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61:6669-673
    10. Kubli DA, Quinsay MN, Huang C, Lee Y, Gustafsson AB (2008) BNIP3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 295(5):H2025–H2031 CrossRef
    11. Wajed SA, Laird PW, DeMeester TR (2001) DNA methylation: an alternative pathway to cancer. Ann Surg 234(1):10-0 CrossRef
    12. Rong N, Selhub J, Goldin BR, Rosenberg IH (1991) Bacterially synthesized folate in rat large intestine is incorporated into host tissue folyl polyglutamates. J Nutr 121(12):1955-959
    13. Camilo E, Zimmerman J, Mason JB, Golner B, Russell R, Selhub J, Rosenberg IH (1996) Folate synthesized by bacteria in the human upper small intestine is assimilated by the host. Gastroenterology 110(4):991-98 CrossRef
    14. Halsted CH, Ling EH, Luthi-Carter R, Villanueva JA, Gardner JM, Coyle JT (1998) Folylpoly-gamma-glutamate carboxypeptidase from pig jejunum. Molecular characterization and relation to glutamate carboxypeptidase II. J Biol Chem 273:20417-0424 CrossRef
    15. Halsted CH, Wong DH, Peerson JM, Warden CH, Refsum H, Smith AD, Nygard OK et al (2007) Relations of glutamate carboxypeptidase II (GCPII) polymorphisms to folate and homocysteine concentrations and to scores of cognition, anxiety and depression in a homogeneous Norwegian population: the Hordaland Homocysteine Study. Am J Clin Nutr 86:514-21
    16. Divyya S, Naushad SM, Addlagatta A, Murthy PV, Reddy ChR, Digumarti RR, Gottumukkala SR et al (2012) Paradoxical role of C1561T glutamate carboxypeptidase II (GCPII) genetic polymorphism in altering disease susceptibility. Gene 497(2):273-79 CrossRef
    17. Divyya S, Naushad SM, Addlagatta A, Murthy PV, Reddy ChR, Digumarti RR, Gottumukkala SR et al (2012) Association of glutamate carboxypeptidase II ( / GCPII) haplotypes with breast and prostate cancer risk. Gene 516(1):76-1 CrossRef
    18. Smith TR, Miller MS, Lohman KK, Case LD, Hu JJ (2003) DNA damage and breast cancer risk. Carcinogenesis 24(5):883-89 CrossRef
    19. Xu X, Gammon MD, Zhang H, Wetmur JG, Rao M, Teitelbaum SL et al (2007) Polymorphisms of folate-metabolizing genes and risk of breast cancer in a population-based study. Carcinogenesis 28(7):1504-509 CrossRef
    20. Ambrosone CB (2000) Oxidants and antioxidants in breast cancer. Antioxid Redox Signal 2(4):903-17 CrossRef
    21. Majumdar S, Mukherjee S, Maiti A, Karmakar S, Das AS, Mukherjee M et al (2009) Folic acid or combination of folic acid and vitamin B(12) prevents short-term arsenic trioxide-induced systemic and mitochondrial dysfunction and DNA damage. Environ Toxicol 24(4):377-87 CrossRef
    22. Bagnyukova TV, Powell CL, Pavliv O, Tryndyak VP, Pogribny IP (2008) Induction of oxidative stress and DNA damage in rat brain by a folate/methyl-deficient diet. Brain Res 1237:44-1 CrossRef
    23. Siow YL, Au-Yeung KK, Woo CWOK (2006) Homocysteine stimulates phosphorylation of NADPH oxidase p47phox and p67phox subunits in monocytes via protein kinase Cbeta activation. Biochem J 398(1):73-2 CrossRef
    24. Cavallaro RA, Fuso A, Nicolia V, Scarpa S (2010) S-adenosylmethionine prevents oxidative stress and modulates glutathione metabolism in TgCRND8 mice fed a B-vitamin deficient diet. J Alzheimers Dis 20(4):997-002
    25. Krebs J (2002) McCance and Widdowson’s. The composition of foods: summary edition, 6th summary ed. The Royal Society of Chemistry/Food Standards Agency, Cambridge/London
    26. U.S. Department of Agriculture, Agricultural Research Service (2006) USDA national nutrient database for standard reference, Release 18. Nutrient Data Laboratory Home Page [http://www.ars.usda.gov/ba/bhnrc/ndl]
    27. Naushad SM, Reddy CA, Rupasree Y, Pavani A, Digumarti RR, Gottumukkala SR, Kuppusamy P et al (2011) Cross-talk between one-carbon metabolism and xenobiotic metabolism: implications on oxidative DNA damage and susceptibility to breast cancer. Cell Biochem Biophys 61(3):715-23 CrossRef
    28. Placer ZA, Cushman LL, Johnson BC (1966) Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 16(2):359-64 CrossRef
    29. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70-7 CrossRef
    30. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401(1):1-1 CrossRef
    31. Cutler RG (1992) Genetic stability and oxidative stress: common mechanisms in aging and cancer. EXS 62:31-6
    32. Suzuki H, Nishizawa T, Tsugawa H, Mogami S, Hibi T (2012) Roles of oxidative stress in stomach disorders. J Clin Biochem Nutr 50(1):35-9 CrossRef
    33. Hayashi M, Miyata R, Tanuma N (2012) Oxidative stress in developmental brain disorders. Adv Exp Med Biol 724:278-90 CrossRef
    34. Iynem AH, Alademir AZ, Obek C, Kural AR, Konuko?lu D, Ak?ay T (2004) The effect of prostate cancer and antiandrogenic therapy on lipid peroxidation and antioxidant systems. Int Urol Nephrol 36(1):57-2 CrossRef
    35. Gordon IO, Tretiakova MS, Noffsinger AE, Hart J, Reuter VE, Al-Ahmadie HA (2008) Prostate-specific membrane antigen expression in regeneration and repair. Mod Pathol 21(12):1421-427 CrossRef
    36. Stroes ES, van Faassen EE, Yo M, Martasek P, Boer P, Govers R, Rabelink TJ (2000) Folic acid reverts dysfunction of endothelial nitric oxide synthase. Circ Res 86(11):1129-134 CrossRef
    37. Yoo NJ, Kim MS, Park SW, Seo SI, Song SY, Lee JY, Lee SH (2010) Expression analysis of caspase-6, caspase-9 and BNIP3 in prostate cancer. Tumori 96(1):138-42
    38. Murphy TM, Sullivan L, Lane C, O’Connor L, Barrett C, Hollywood D, Lynch T et al (2011) / In silico analysis and DHPLC screening strategy identifies novel apoptotic gene targets of aberrant promoter hypermethylation in prostate cancer. Prostate 71(1):1-7 CrossRef
    39. Metukuri MR, Beer-Stolz D, Namas RA, Dhupar R, Torres A, Loughran PA et al (2009) Expression and subcellular localization of BNIP3 in hypoxic hepatocytes and liver stress. Am J Physiol Gastrointest Liver Physiol 296(3):G499–G509 CrossRef
    40. Naushad SM, Prayaga A, Digumarti RR, Gottumukkala SR, Kutala VK (2012) Bcl-2/adenovirus E1B 19?kDa-interacting protein 3 (BNIP3) expression is epigenetically regulated by one-carbon metabolism in invasive duct cell carcinoma of breast. Mol Cell Biochem 361:189-95 CrossRef
    41. Agathanggelou A, Honorio S, Macartney DP, Martinez A, Dallol A, Rader J et al (2001) Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene 20(12):1509-518 CrossRef
    42. Mao WM, Li P, Zheng QQ, Wang CC, Ge MH, Hu FJ et al (2011) Hypermethylation-modulated down regulation of RASSF1A expression is associated with the progression of esophageal cancer. Arch Med Res 42(3):182-88 CrossRef
    43. Daniunaite K, Berezniakovas A, Jankevi?ius F, Laurinavi?ius A, Lazutka JR, Jarmalait? S (2011) Frequent methylation of RASSF1 and RARB in urine sediments from patients with early stage prostate cancer. Medicina (Kaunas) 47(3):147-53
    44. Tian Y, Hou Y, Zhou X, Cheng H, Zhou R (2011) Tumor suppressor RASSF1A promoter: p53 binding and methylation. PLoS ONE 6(2):e17017 CrossRef
    45. Gezginci-Oktayoglu S, Bolkent S (2012) Ras signaling in NGF reduction and TNF-α-related pancreatic β cell apoptosis in hyperglycemic rats. Apoptosis 17(1):14-4 CrossRef
    46. Kraft P, Wacholder S, Cornelis MC, Hu FB, Hayes RB, Thomas G et al (2009) Beyond odds ratios-communicating disease risk based on genetic pro-files. Nat Rev Genet 10(4):264-69 CrossRef
    47. Kim YI (2004) Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiol Biomark Prev 13(4):511-19
    48. Smith AD, Kim YI, Refsum H (2008) Is folic acid good for everyone? Am J Clin Nutr 87(3):517-33
    49. Kim YI (2006) Folate: a magic bullet or a double edged sword for colorectal cancer prevention? Gut 55(10):1387-389 CrossRef
  • 作者单位:Shree Divyya (1)
    Shaik Mohammad Naushad (1)
    P. V. L. N. Murthy (2)
    Ch Ram Reddy (2)
    Vijay Kumar Kutala (1)

    1. Departments of Clinical Pharmacology and Therapeutics, Nizam’s Institute of Medical Sciences (NIMS), Panjagutta, Hyderabad, 500082, India
    2. Departments of Urology, Nizam’s Institute of Medical Sciences, Hyderabad, India
  • ISSN:1573-4978
文摘
Glutamate carboxypeptidase II (GCPII) haplotypes were found to influence susceptibility to prostate cancer. In the current study, we have elucidated the impact of these haplotypes on the expression of PSMA, BNIP3, Ec-SOD, GSTP1 and RASSF1 genes to understand the epigenetic basis of oxidative stress and prostate cancer risk. Expression analysis was carried out by RT-PCR. Bisulphite treated DNA was subjected to MS-PCR and COBRA for epigenetic studies. Plasma MDA and glutathione levels were measured. In prostate cancer, upregulation of BNIP3 (204.4?±?23.77 vs. 143.9?±?16.42?%, p?=?0.03); and downregulation of Ec-SOD (105.8?±?13.69 vs. 176.3?±?21.1?%, p?=?0.027) and RASSF1A (16.67?±?16.0 vs. 90.8?±?8.5?%, p?=?0.0048) was observed. Hypomethylation of BNIP3 (31.25?±?16.19 vs. 45.70?±?2.42?%, p?<?0.0001), hypermethylation of Ec-SOD (71.4?±?6.75 vs. 10.0?±?3.78?%, p?<?0.0001) and RASSF1 (76.25?±?12.53 vs. 30.0?±?8.82?%, p?=?0.0077) was observed in prostate cancer. The gene expression signature of PSMA, BNIP3, Ec-SOD, GSTP1, clearly demarcated cases and controls (AUC?=?0.89 in the ROC curve). D191V variant of GCPII showed positive association with oxidative stress and inverse association with Ec-SOD expression. H475Y variant showed positive association with Ec-SOD expression and inverse association with oxidative stress. R190W variant was found to reduce oxidative stress by increasing glutathione levels. GCPII genetic variants contribute to increased oxidative stress and prostate cancer risk by modulating the CpG island methylation of Ec-SOD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700