Holocene climate change and landscape development from a low-Arctic tundra lake in the western Hudson Bay region of Manitoba, Canada
详细信息    查看全文
  • 作者:Philip Camill (1) pcamill@bowdoin.edu
    Charles E. Umbanhowar Jr. (2)
    Christoph Geiss (3)
    William O. Hobbs (4)
    Mark B. Edlund (4)
    Avery Cook Shinneman (5)
    Jeffrey A. Dorale (6)
    Jason Lynch (7)
  • 关键词:Arctic &#8211 ; Lake &#8211 ; Paleoclimate &#8211 ; Hudson Bay &#8211 ; Holocene &#8211 ; Proxy &#8211 ; Peat &#8211 ; Pollen &#8211 ; Diatom &#8211 ; Fire &#8211 ; XRF &#8211 ; Geochemistry
  • 刊名:Journal of Paleolimnology
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:48
  • 期:1
  • 页码:175-192
  • 全文大小:1.1 MB
  • 参考文献:1. Adams JK, Finkelstein S (2010) Watershed-scale reconstruction of middle and late Holocene paleoenvironmental changes on Melville Peninsula, Nunavut, Canada. Quat Sci Rev 29:2302–2314
    2. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297
    3. Anderson NJ, Brodersen KP, Ryves DB, McGowan S, Johansson LS, Jeppesen E, Leng MJ (2008) Climate versus in-lake processes as controls on the development of community structure in a low-arctic lake (South-West Greenland). Ecosystems 11:307–324
    4. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8
    5. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170
    6. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochron 5:512–518
    7. Bo毛s X, Rydberg J, Martinez-Cortizas A, Bindler R, Renberg I (2011) Evaluation of conservative lithogenic elements (Ti, Zr, Al, and Rb) to study anthropogenic element enrichments in lake sediments. J Paleolimnol 46:75–87
    8. Camburn KE, Charles DF (2000) Diatoms of low-alkalinity lakes in the northeastern United States. The Academy of Natural Sciences of Philadelphia Special Publication 18. p 152
    9. Camill P, Umbanhowar CE, Teed R, Geiss CE, Aldinger J, Dvorak L, Kenning J, Limmer J, Walkup K (2003) Late-glacial and Holocene climatic effects on fire and vegetation dynamics at the prairie-forest ecotone in south-central Minnesota. J Ecol 91:822–836
    10. Carnigan R, Flett RJ (1981) Postdepositional mobility of phosphorus in lake sediments. Limnol Oceanogr 26:361–366
    11. Clark JS, Hussey T, Royall PD (1996) Presettlement analogs for quaternary fire regimes in eastern North America. J Paleolimnol 16:79–96
    12. Conley DJ (1998) An interlaboratory comparison for the measurement of biogenic silica in sediments. Mar Chem 63:39–48
    13. Conley DJ, Schelske CL (1993) Potential role of sponge spicules in influencing the silicon biogeochemistry of Florida lakes. Can J Fish Aquat Sci 50:296–302
    14. Dean WE Jr (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss-on-ignition: comparison with other methods. J Sediment Petrol 44:271–272
    15. Engstrom DR, Fritz SC (2006) Coupling between primary terrestrial succession and the trophic development of lakes at Glacier Bay, Alaska. J Paleolimnol 35:873–880
    16. Engstrom DR, Wright Jr HR (1984) Chemical stratigraphy of lake sediments as a record of environmental change. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. University of Minnesota Press, Minneapolis, pp 11–67
    17. F忙gri K, Iversen J, Kaland PE, Kryzywinski K (1989) Textbook of pollen analysis, 4th edn. Wiley, New York
    18. Fallu MA, Allaire N, Pienitz R (2000) Freshwater diatoms from northern Qu茅bec and Labrador (Canada): species–environment relationships in lakes of boreal forest, forest-tundra and tundra regions. Bibl Diatom Band 45. E. Schweizerbart, Germany, p 200
    19. Fortin MC, Gajewski K (2009) Assessing the use of sediment organic, carbonate and biogenic silica content as indicators of environmental conditions in Arctic lakes. Polar Biol 32:985–998
    20. Frederichs T, von Dobeneck T, Bleil U, Dekkers MJ (2003) Towards the identification of siderite, rhodochrosite, and vivianite in sediments by their low-temperature magnetic properties. Phys Chem Earth 28:669–679
    21. Fritz SC, Cumming BF, Gasse F, Laird K (1999) Diatoms as indicators of hydrologic and climatic change in saline lakes. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 41–72
    22. Geiss CE, Umbanhowar CE, Camill P, Banerjee SK (2003) Sediment magnetic properties reveal Holocene climate change along the Minnesota prairie-forest ecotone. J Paleolimnol 30:151–166
    23. Grimm EC (1987) CONISS, a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35
    24. Hansen BCS, Engstrom DR (1985) A comparison of numerical and qualitative methods of separating pollen of black and white spruce. Can J Bot 63:2159–2163
    25. Haworth EY (1976) Two late-glacial (late Devensian) diatom assemblage profiles from northern Scotland. New Phytol 77:227–256
    26. Hill MO, Gauch HG (1980) Detrended correspondence-analysis—an improved ordination technique. Vegetatio 42:47–58
    27. Hoenicke R, Stapanian MA, Arent LJ, Metcalf RC (1991) Consequences of pH measurement errors. Freshw Biol 25(2):261–278
    28. Hu FS, Finney BP, Brubaker LB (2001) Effects of Holocene Alnus expansion on aquatic productivity, nitrogen cycling, and soil development in southwestern Alaska. Ecosystems 4:358–368
    29. Huang CC, MacDonald G, Cwynar L (2004) Holocene landscape development and climatic change in the low Arctic, Northwest Territories, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 205:221–234
    30. IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Reisinger A (eds)]. IPCC, Geneva, p 104
    31. Joynt EH, Wolfe AP (2001) Paleoenvironmental inference models from sediment diatom assemblages in Baffin Island lakes (Nunavut, Canada) and reconstruction of summer water temperature. Can J Fish Aquat Sci 58:1222–1243
    32. Juggins S (2003) C2 Software for ecological and palaeoecological data analysis and visualisation User Guide Version 1.3. University of Newcastle
    33. Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski K, Geirsd贸ttir A, Hu FS, Jennings AE, Kaplan MR, Kerwin MW, Lozhkin AV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, R眉hland K, Smol JP, Steig EJ, Wolfe BB (2004) Holocene thermal maximum in the western arctic (0–180掳W). Quat Sci Rev 23:529–560
    34. Kling GW, Fry B, O’Brien WJ (1992) Stable isotopes and planktonic trophic structure in Arctic lakes. Ecology 73:561–566
    35. Kosten S, Huszar VLM, Mazzeo N, Scheffer M, Sternberg LDL, Jeppesen E (2009) Lake and watershed characteristics rather than climate influence nutrient limitation in shallow lakes. Ecol Appl 19:1791–1804
    36. Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae. 1–4. Teil: Naviculaceae. In: Ettl H, G盲rtner G, Gerloff J, Heynig H, Mollenhauer D (eds) S眉脽wasserflora von Mitteleuropa. Bands 2/1–2/4, Gustav Fischer Verlag, Stuttgart, p 876, p 596, p 576, p 437
    37. Kylander ME, Ampel L, Wohlfarth B, Veres D (2011) High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies. J Quat Sci 26:109–117
    38. Leavitt PR, Fritz SC, Anderson NJ, Baker PA, Blenckner T, Bunting L, Catalan J, Conley DJ, Hobbs WO, Jeppesen E, Korhola A, McGowan S, R眉hland K, Rusak JA, Simpson GL, Solovieva N, Werne J (2009) Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans. Limnol Oceanogr 54:2330–2348
    39. MacDonald GM, Porinchu DF, Nicolas R, Kremenetsky KV, Kaufman DS (2009) Paleolimnological evidence of the response of the central Canadian treeline zone to radiative forcing and hemispheric patterns of temperature change over the past 2000 years. J Paleolimnol 41:129–141
    40. Matile GLD, Keller GR (2006) Surficial geology of the Nejanilini Lake map sheets (NTS 64P), Manitoba, Surficial Geol. Compilation Maps Ser., SG-64P, scale 1:250,000, Manitoba Sci. Technol. Energy and Mines, Manitoba Geol. Surv., Winnipeg, Manitoba, Canada
    41. McAndrews JH, Berti A, Norris G (1973) Key of quaternary pollen and spores of the Great Lake Region. Life Sci. Misc. Publ., R. Ont. Mus.
    42. Meyers P (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289
    43. Michelutti N, Douglas MSV, Wolfe AP, Smol JP (2006) Heightened sensitivity of a poorly buffered high arctic lake to late-Holocene climatic change. Quat Res 65:421–430
    44. Michelutti N, Wolfe AP, Briner JP, Miller GH (2007) Climatically controlled chemical and biological development in Arctic lakes. J Geophys Res Biogeosci 112(G3). doi:10.1029/2006JG000396
    45. Moser KA, MacDonald GM (1990) Holocene vegetation change at treeline north of Yellowknife, Northwest Territories, Canada. Quat Res 34:227–239
    46. Moskowitz BM, Frankel RB, Flanders PJ, Blakemore RP, Schwartz BB (1988) Magnetic properties of magnetotactic bacteria. J Magn Magn Mater 73:273–288
    47. Paul CA, R眉hland KM, Smol JP (2010) Diatom-inferred climatic and environmental changes over the last similar to 9000 years from a low Arctic (Nunavut, Canada) tundra lake. Palaeogeogr Palaeoclimatol Palaeoecol 291:205–216
    48. Peros M, Gajewski K, Paull T, Ravindra R, Podritske B (2010) Multi-proxy record of postglacial environmental change, south-central Melville Island, Northwest Territories, Canada. Quat Res 73:247–258
    49. Rouse WR (1991) Impact of Hudson Bay on the terrestrial climate of the Hudson Bay Lowlands. Arct Alp Res 23:24–30
    50. R眉hland K, Priesnitz A, Smol JP (2003) Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian arctic treeline. Arct Antarct Alp Res 35:110–123
    51. R眉hland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2754
    52. Schindler DW (2009) Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol Oceanogr 54:2349–2358
    53. Schledewitz DCP, Lindal D (2002) Nejanilini Lake, Bedrock Geology Compilation Map, NTS 64P, scale 1:250,000. Manitoba Sci. Technol. Energy and Mines, Manitoba Geol. Surv., Winnipeg, Manitoba, Canada
    54. Scott PA, Fayle DCF, Bentley CV, Hansell RIC (1988) Large-scale changes in atmospheric circulation interpreted from patterns of tree growth at Churchill, Manitoba, Canada. Arct Alp Res 20:199–211
    55. Stuiver M, Reimer PJ, Reimer R (1999) CALIB radiocarbon calibration (HTML Version 6.0). http://calib.qub.ac.uk/calib/
    56. Tardif JC, Conciatori F, Leavitt SW (2008) Tree rings, delta C-13 and climate in Picea glauca growing near Churchill, subarctic Manitoba, Canada. Chem Geol 252:88–101
    57. Tillman PK, Holzk盲mper S, Kuhry P, Sannel ABK, Loader NJ, Robertson I (2010) Long-term climate variability in continental subarctic Canada: a 6200-year record derived from stable isotopes in peat. Palaeogeogr Palaeoclimatol Palaeoecol 298:235–246
    58. Tivy A, Howell SEL, Alt B (2011) Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive, 1960–2008 and 1968–2008. J Geophys Res-Oceans 116. doi:10.1029/2009JC005855
    59. Triplett L (2002) Standard operating procedures for grain size analysis sample preparation. Limnological Research Center, Minneapolis
    60. Viau AE, Gajewski K (2009) Reconstructing millennial-scale, regional paleoclimates of boreal Canada during the Holocene. J Clim 22:316–330
    61. Wolfe AP (2002) Climate modulates acidity of Arctic lakes on millennial time scales. Geology 30:215–218
    62. Yu Z, Bielman D, Frolking S, MacDonald G, Roulet N, Camill P, Charman D (2011) Peatlands in the global carbon cycle. EOS 92:97–98
  • 作者单位:1. Environmental Studies Program and Department of Earth and Oceanographic Science, Bowdoin College, Brunswick, ME 04011, USA2. Department of Biology, St. Olaf College, Northfield, MN 55057, USA3. Department of Physics and Environmental Sciences Program, Trinity College, Hartford, CT 06106, USA4. St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, MN 55047, USA5. Department of Biology, University of Washington, Seattle, WA 98195, USA6. Department of Geoscience, University of Iowa, Iowa City, IA 52242, USA7. Department of Biology, North Central College, Naperville, IL 60540, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Sedimentology
    Climate Change
    Physical Geography
    Hydrobiology
    Geology
  • 出版者:Springer Netherlands
  • ISSN:1573-0417
文摘
The low-Arctic region of western Hudson Bay in interior Canada is one of the most poorly described areas of North America in terms of Holocene climate history. Here, we present new data from a well-dated lake sediment core from northern Manitoba, Canada. We assemble one of the richest multi-proxy datasets to date for a low-Arctic lake and characterize terrestrial and lake processes and exchanges between them. These proxies include fossil pollen and diatom assemblages, charcoal, magnetic properties (susceptibility and remanance), mineral grain size, bulk density, organic-matter content, elemental geochemistry, sediment cation (K+, Mg2+, Ca2+, Fe2+/Fe3+) and macronutrient (P, N, C) contents, biogenic-silica content, basal peat dates (wetland initiation), and stable isotopes (δ13C, δ15N). The sediment proxies record both broad- and fine-scale (millennial and sub-millennial) climate change. We find indirect evidence for a cool and dry post-glacial period from 9,000 to 6,500 cal yr BP, a warm and moist mid-Holocene period from 6,500 to 2,500 cal yr BP, and a cool and moist late-Holocene period from 2,500 cal yr BP to present. High-resolution geochemical data suggests 300- to 500-year-long dry periods at ~6,500–6,100, 5,300–5,000, 3,300–2,800, and 400–0 cal yr BP. These results suggest that terrestrial and aquatic ecosystem dynamics in the western Hudson Bay region are sensitive to past climate change and are likely to respond to future changes in temperature and precipitation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700