Inheritance and Variation of Genomic DNA Methylation in Diploid and Triploid Pacific Oyster (Crassostrea gigas)
详细信息    查看全文
  • 作者:Qun Jiang ; Qi Li ; Hong Yu ; Lingfeng Kong
  • 关键词:DNA methylation ; F ; MSAP ; Heritability ; Polyploidy
  • 刊名:Marine Biotechnology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:18
  • 期:1
  • 页码:124-132
  • 全文大小:481 KB
  • 参考文献:Bird AP (1995) Gene number, noise reduction and biological complexity. Trends Genet 11:94–100PubMed CrossRef
    Blouin MS, Thuillier V, Cooper B, Amarasinghe V, Cluzel L, Araki H, Grunau C (2010) No evidence for large differences in genomic methylation between wild and hatchery steelhead (Oncorhynchus mykiss). Can J Fish Aquat Sci 67:217–224CrossRef
    Cervera MT, Ruiz-Garcia L, Martinez-Zapater JM (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics 268:543–552PubMed CrossRef
    Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406PubMed PubMedCentral CrossRef
    Colot V, Rossignol JL (1999) Eukaryotic DNA methylation as an evolutionary device. Bioessays 21:402–411PubMed CrossRef
    Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161PubMed CrossRef
    Elango N, Hunt BG, Goodisman MAD, Yi SV (2009) DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. PNAS 106:11206–11211PubMed PubMedCentral CrossRef
    Fabioux C, Huvet A, Le Souchu P, Le Pennec M, Pouvreau S (2005) Temperature and photoperiod drive Crassostrea gigas reproductive internal clock. Aquaculture 250:458–470CrossRef
    Finnegan EJ (2002) Epialleles—a source of random variation in times of stress. Curr Opin Plant Biol 5:101–106PubMed CrossRef
    Gavery MR, Roberts SB (2010) DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genomics 11:483PubMed PubMedCentral CrossRef
    Gavery MR, Roberts SB (2013) Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc. PeerJ 1:e215PubMed PubMedCentral CrossRef
    Gavery MR, Roberts SB (2014) A context dependent role for DNA methylation in bivalves. Brief Funct Genomics 13:217–222PubMed CrossRef
    Glastad KM, Hunt BG, Yi SV, Goodisman MAD (2014) Epigenetic inheritance and genome regulation: is DNA methylation linked to ploidy in haplodiploid insects? Proc Biol Sci 281:20140411PubMed PubMedCentral CrossRef
    Gorelick R (2003) Evolution of dioecy and sex chromosomes via methylation driving Muller's ratchet. Biol J Linn Soc 80:353–368CrossRef
    Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK (2010) Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 5:e13100PubMed PubMedCentral CrossRef
    Guo X, Li Q, Wang QZ, Kong LF (2012) Genetic mapping and QTL analysis of growth-related traits in the Pacific oyster. Mar Biotechnol 14:218–226PubMed CrossRef
    Hedrick PW, Hedgecock D (2010) Sex determination: genetic models for oysters. J Hered 101:602–611PubMed CrossRef
    Herrera CM, Bazaga P (2010) Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol 187:867–876PubMed CrossRef
    Hunt BG, Brisson JA, Yi SV, Goodisman MAD (2010) Functional conservation of DNA methylation in the pea aphid and the honeybee. Genome Biol Evol 2:719–728PubMed PubMedCentral
    Jablonka E, Lamb MJ (1998) Epigenetic inheritance in evolution. J Evol Biol 11:159–183CrossRef
    Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176PubMed CrossRef
    Li Q, Yu H, Yu R (2006) Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (Crassostrea gigas) in China. Aquaculture 259:95–102CrossRef
    Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8:e1000506PubMed PubMedCentral CrossRef
    Manikkam M, Guerrero-Bosagna C, Tracey R, Haque MM, Skinner MK (2012) Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS One 7:e31901PubMed PubMedCentral CrossRef
    Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952PubMed CrossRef
    Marfil CF, Camadro EL, Masuelli RW (2009) Phenotypic instability and epigenetic variability in a diploid potato of hybrid origin, Solanum ruiz-lealii. BMC Plant Biol 9:21PubMed PubMedCentral CrossRef
    Navarro-Martin L, Vinas J, Ribas L, Diaz N, Gutierrez A, Di Croce L, Piferrer F (2011) DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet 7:e1002447PubMed PubMedCentral CrossRef
    Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257PubMed CrossRef
    Olson CE, Roberts SB (2014a) Genome-wide profiling of DNA methylation and gene expression in Crassostrea gigas male gametes. Front Phys 5:224CrossRef
    Olson CE, Roberts SB (2014b) Indication of family-specific DNA methylation patterns in developing oysters. bioRxiv. doi:10.​1101/​012831
    Parisod C, Christin PA (2008) Genome-wide association to fine-scale ecological heterogeneity within a continuous population of Biscutella laevigata (Brassicaceae). New Phytol 178:436–447PubMed CrossRef
    Paun O, Fay MF, Soltis DE, Chase MW (2007) Genetic and epigenetic alterations after hybridization and genome doubling. Taxon 56:649–656PubMed PubMedCentral CrossRef
    Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91PubMed CrossRef
    Richards EJ (2006) Opinion—inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–401PubMed CrossRef
    Richards EJ (2008) Population epigenetics. Curr Opin Genet Dev 18:221–226PubMed CrossRef
    Riddle NC, Richards EJ (2005) Genetic variation in epigenetic inheritance of ribosomal RNA gene methylation in Arabidopsis. Plant J 41:524–532PubMed CrossRef
    Riviere G (2014) Epigenetic features in the oyster Crassostrea gigas suggestive of functionally relevant promoter DNA methylation in invertebrates. Front Phys 5:129
    Riviere G, Wu G-C, Fellous A, Goux D, Sourdaine P, Favrel P (2013) DNA methylation is crucial for the early development in the oyster C. gigas. Mar Biotechnol 15:739–753PubMed CrossRef
    Roberts SB, Gavery MR (2012) Is there a relationship between DNA methylation and phenotypic plasticity in invertebrates? Front Phys 2:116CrossRef
    Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175PubMed CrossRef
    Santerre C, Sourdaine P, Marc N, Mingant C, Robert R, Martinez A-S (2013) Oyster sex determination is influenced by temperature—first clues in spat during first gonadic differentiation and gametogenesis. Comp Biochem Physiol A Mol Integr Physiol 165:61–69PubMed CrossRef
    Santos F, Dean W (2004) Epigenetic reprogramming during early development in mammals. Reproduction 127:643–651PubMed CrossRef
    Sarda S, Zeng J, Hunt BG, Yi SV (2012) The evolution of invertebrate gene body methylation. Mol Biol Evol 29:1907–1916PubMed CrossRef
    Scheid OM, Jakovleva L, Afsar K, Maluszynska J, Paszkowski J (1996) A change of ploidy can modify epigenetic silencing. PNAS 93:7114–7119CrossRef
    Scheid OM, Afsar K, Paszkowski J (2003) Formation of stable epialleles and their paramutation-like interaction in tetraploid Arabidopsis thaliana. Nat Genet 34:450–454CrossRef
    Suzuki MM, Kerr ARW, De Sousa D, Bird A (2007) CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res 17:625–631PubMed PubMedCentral CrossRef
    Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:1617–1629CrossRef
    Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010a) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118PubMed CrossRef
    Verhoeven KJF, Van Dijk PJ, Biere A (2010b) Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages. Mol Ecol 19:315–324PubMed CrossRef
    Wang JL, Tian L, Madlung A, Lee HS, Chen M, Lee JJ, Watson B, Kagochi T, Comai L, Chen ZJ (2004) Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics 167:1961–1973PubMed PubMedCentral CrossRef
    Wang JL, Tian L, Lee HS, Wei NE, Jiang HM, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517PubMed PubMedCentral CrossRef
    Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486PubMed CrossRef
    Xiong L, Xu C, Maroof MS, Zhang Q (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261:439–446PubMed CrossRef
    Xu ML, Li XQ, Korban SS (2000) AFLP-based detection of DNA methylation. Plant Mol Biol Report 18:361–368CrossRef
    Yang C, Zhang M, Niu W, Yang R, Zhang Y, Qiu Z, Sun B, Zhao Z (2011) Analysis of DNA methylation in various swine tissues. PLoS One 6:e16229PubMed PubMedCentral CrossRef
    Zhang X, Ho S-M (2011) Epigenetics meets endocrinology. J Mol Endocrinol 46:R11–R32PubMed PubMedCentral CrossRef
    Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201PubMed CrossRef
  • 作者单位:Qun Jiang (1)
    Qi Li (1)
    Hong Yu (1)
    Lingfeng Kong (1)

    1. The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Oceanography
  • 出版者:Springer New York
  • ISSN:1436-2236
文摘
DNA methylation is an important epigenetic mechanism that could be responsive to environmental changes indicating a potential role in natural selection and adaption. In order to evaluate an evolutionary role of DNA methylation, it is essential to first gain a better insight into inheritability. To address this question, this study investigated DNA methylation variation from parents to offspring in the Pacific oyster Crassostrea gigas using fluorescent-labeled methylation-sensitive amplified polymorphism (F-MSAP) analysis. Most of parental methylated loci were stably transmitted to offspring segregating following Medelian expectation. However, methylated loci deviated more often than non-methylated loci and offspring showed a few de novo methylated loci indicating DNA methylation changes from parents to offspring. Interestingly, some male-specific methylated loci were found in this study which might help to explore sex determination in oyster. Despite environmental stimuli, genomic stresses such as polyploidization also can induce methylation changes. This study also compared global DNA methylation level and individual methylated loci between diploid and triploid oysters. Results showed no difference in global methylation state but a few ploidy-specific loci were detected. DNA methylation variation during polyploidization was less than autonomous methylation variation from parents to offspring. Keywords DNA methylation F-MSAP Heritability Polyploidy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700