Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, Crassostrea gigas
详细信息    查看全文
  • 作者:Qihui Zhu ; Linlin Zhang ; Li Li ; Huayong Que ; Guofan Zhang
  • 关键词:Oysters ; Temperature stress ; Stress proteins ; Gene expression ; Adaptation
  • 刊名:Marine Biotechnology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:18
  • 期:2
  • 页码:176-188
  • 全文大小:4,947 KB
  • 参考文献:Akberali H, Trueman E (1985) Effects of environmental stress on marine bivalve molluscs. Adv Mar Biol 22:101–198CrossRef
    Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995PubMed
    Berger VJ, Kharazova AD (1997) Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355:115–126CrossRef
    Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP et al (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460:352–U365CrossRef PubMed PubMedCentral
    Berthelin C, Kellner K, Mathieu M (2000) Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (west coast of France). Comp Biochem Physiol B Biochem Mol Biol 125:359–369CrossRef PubMed
    Blake JA, Grassle JP, Eckelbarger KJ (2009) Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. In: Maciolek NJ, Blake JA (eds) Proceedings of the 9th International Polychaete Conference (Zoosymposia 2), vol 2. Magnolia Press, New Zealand, pp 25–53
    Boutet I, Tanguy A, Rousseau S, Auffret M, Moraga D (2003) Molecular identification and expression of heat shock cognate 70 (hsc70) and heat shock protein 70 (hsp70) genes in the Pacific oyster Crassostrea gigas. Cell Stress Chaperones 8:76–85CrossRef PubMed PubMedCentral
    Briknarova K, Takayama S, Brive L, Havert ML, Knee DA et al (2001) Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat Struct Biol 8:349–352CrossRef PubMed
    C. Elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018CrossRef
    Cameron RA, Samanta M, Yuan A, He D, Davidson E (2009) SpBase: the sea urchin genome database and web site. Nucleic Acids Res 37:D750–D754CrossRef PubMed PubMedCentral
    Chen SA, Yang PC, Jiang F, Wei YY, Ma ZY et al (2010) De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PLoS One 5:e15633CrossRef PubMed PubMedCentral
    Clegg JS, Uhlinger KR, Jackson SA, Cherr GN, Rifkin E et al (1998) Induced thermotolerance and the heat shock protein-70 family in the Pacific oyster Crassostrea gigas. Mol Mar Biol Biotechnol 7:21–30
    Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A et al (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555–561CrossRef PubMed PubMedCentral
    Craig EA, Ingolia TD, Manseau LJ (1983) Expression of Drosophila heat-shock cognate genes during heat-shock and development. Dev Biol 99:418–426CrossRef PubMed
    Delaporte M, Soudant P, Lambert C, Moal J, Pouvreau S et al (2006) Impact of food availability on energy storage and defense related hemocyte parameters of the Pacific oyster Crassostrea gigas during an experimental reproductive cycle. Aquaculture 254:571–582CrossRef
    Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155CrossRef PubMed
    Du YS, Zhang LL, Xu F, Huang BY, Zhang GF et al (2013) Validation of housekeeping genes as internal controls for studying gene expression during Pacific oyster (Crassostrea gigas) development by quantitative real-time PCR. Fish Shellfish Immunol 34:939–945CrossRef PubMed
    Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29:51–63CrossRef PubMed
    Farcy E, Voiseux C, Lebel JM, Fievet B (2009) Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress. Cell Stress Chaperones 14:371–380CrossRef PubMed PubMedCentral
    Fenberg PB, Rivadeneira MM (2011) Range limits and geographic patterns of abundance of the rocky intertidal owl limpet, Lottia gigantea. J Biogeogr 38:2286–2298CrossRef
    Ferri KF, Kroemer G (2001) Mitochondria—the suicide organelles. Bioessays 23:111–115CrossRef PubMed
    Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M et al (2012) The genome portal of the department of energy joint genome institute. Nucleic Acids Res 40:D26–D32CrossRef PubMed PubMedCentral
    Guo XM (2009) Use and exchange of genetic resources in molluscan aquaculture. Rev Aquac 1:251–259CrossRef
    Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW (2013) Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol 30:1987–1997CrossRef PubMed
    Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22:2971–2972CrossRef PubMed
    Hightower LE (1993) A brief perspective on the heat-shock response and stress proteins. Mar Environ Res 35:79–83CrossRef
    Hofmann GE, Somero GN (1995) Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. J Exp Biol 198:1509–1518PubMed
    Ingolia TD, Craig EA (1982) Drosophila gene related to the major heat shock-induced gene is transcribed at normal temperatures and not induced by heat-shock. Proc Natl Acad Sci U S A 79:525–529CrossRef PubMed PubMedCentral
    Ivanina AV, Taylor C, Sokolova IM (2009) Effects of elevated temperature and cadmium exposure on stress protein response in eastern oysters Crassostrea virginica (Gmelin). Aquat Toxicol 91:245–254CrossRef PubMed
    Jackson SA, Uhlinger KR, Clegg JS (2011) Duration of induced thermal tolerance and tissue-specific expression of hsp/hsc70 in the eastern oyster, Crassostrea virginica and the Pacific oyster, Crassostrea gigas. Aquaculture 317:168–174CrossRef
    Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651CrossRef PubMed
    Kroemer G (2001) Mitochondria in apoptosis: the suicide organelles. Mol Biol Cell 12:398a
    Kruidering M, Evan GI (2000) Caspase-8 in apoptosis: the beginning of “the end”? IUBMB Life 50:85–90CrossRef PubMed
    Lang RP, Bayne CJ, Camara MD, Cunningham C, Jenny MJ et al (2009) Transcriptome profiling of selectively bred Pacific oyster Crassostrea gigas families that differ in tolerance of heat shock. Mar Biotechnol 11:650–668CrossRef PubMed PubMedCentral
    Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677CrossRef PubMed
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-delta delta C) method. Methods 25:402–408CrossRef PubMed
    Marygold SJ, Leyland PC, Seal RL, Goodman JL, Thurmond J et al (2013) FlyBase: improvements to the bibliography. Nucleic Acids Res 41:D751–D757CrossRef PubMed PubMedCentral
    Meistertzheim AL, Tanguy A, Moraga D, Thebault MT (2007) Identification of differentially expressed genes of the Pacific oyster Crassostrea gigas exposed to prolonged thermal stress. FEBS J 274:6392–6402CrossRef PubMed
    Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955CrossRef PubMed
    Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628CrossRef PubMed
    Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496CrossRef PubMed
    Portner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A Mol Integr Physiol 132:739–761CrossRef PubMed
    Portner HO, Farrell AP (2008) Ecology: physiology and climate change. Science 322:690–692CrossRef PubMed
    Privalov PL, Gill SJ (1989) The hydrophobic effect: a reappraisal. Pure Appl Chem 61:1097–1104CrossRef
    Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94CrossRef PubMed
    Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–U1063CrossRef PubMed
    Rao RV, Peel A, Logvinova A, del Rio G, Hermel E et al (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514:122–128CrossRef PubMed PubMedCentral
    Raoa RV, Peela A, Logvinovaa A (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514:122–128CrossRef
    Reich M, Liefeld T, Gould J, Lerner J, Tamayo P et al (2006) GenePattern 2.0. Nat Genet 38:500–501CrossRef PubMed
    Riddle DL (1977) Genetic pathway for dauer larva formation in Caenorhabditis elegans. J Supramol Struct 70–70
    Saunders DS, Henrich VC, Gilbert LI (1989) Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc Natl Acad Sci U S A 86:3748–3752CrossRef PubMed PubMedCentral
    Shamseldin AA, Clegg JS, Friedman CS, Cherr GN, Pillai MC (1997) Induced thermotolerance in the Pacific oyster, Crassostrea gigas. J Shellfish Res 16:487–491
    Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16CrossRef PubMed PubMedCentral
    Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA et al (2006) Research article—The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952CrossRef PubMed
    Sokolova IM (2009) Apoptosis in molluscan immune defense. Invertebr Surviv J 6:49–58
    Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68CrossRef PubMed
    Stillman JH, Somero GN (1996) Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution. J Exp Biol 199:1845–1855PubMed
    Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800CrossRef PubMed PubMedCentral
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRef PubMed PubMedCentral
    Tomanek L, Somero GN (1999) Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: Implications for limits of thermotolerance and biogeography. J Exp Biol 202:2925–2936PubMed
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034CrossRef PubMed PubMedCentral
    Wang HY, Zhang GF, Lio X, Guo XM (2008) Classification of common oysters from North China. J Shellfish Res 27:495–503CrossRef
    Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469CrossRef PubMed
    Yuan SC, Liu HL, Gu M, Xu LQ, Huang SF et al (2010) Characterization of the extrinsic apoptotic pathway in the basal chordate amphioxus. Sci Signal 3:ra66CrossRef PubMed
    Zhang LL, Hou R, Su HL, Hu XL, Wang S et al (2012a) Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock. PLoS One 7:e35484CrossRef PubMed PubMedCentral
    Zhang GF, Fang XD, Guo XM, Li L, Luo RB et al (2012b) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54CrossRef PubMed
  • 作者单位:Qihui Zhu (1) (2) (4)
    Linlin Zhang (1) (3) (4)
    Li Li (1) (4) (5)
    Huayong Que (1) (3) (4)
    Guofan Zhang (1) (3) (4)

    1. Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
    2. University of Chinese Academy of Sciences, Beijing, China
    4. National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
    3. Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
    5. Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Oceanography
  • 出版者:Springer New York
  • ISSN:1436-2236
文摘
As a characteristic sessile inhabitant of the intertidal zone, the Pacific oyster Crassostrea gigas occupies one of the most physically stressful environments on earth. With high exposure to terrestrial conditions, oysters must tolerate broad fluctuations in temperature range. However, oysters’ cellular and molecular responses to temperature stresses have not been fully characterized. Here, we analyzed oyster transcriptome data under high and low temperatures. We also identified over 30 key temperature stress-responsive candidate genes, which encoded stress proteins such as heat shock proteins and apoptosis-associated proteins. The expression characterization of these genes under short-term cold and hot environments (5 and 35 °C) and long-term cold environments (5 °C) was detected by quantitative real-time PCR. Most of these genes reached expression peaks during the recovery stage after 24 h of heat stress, and these genes were greatly induced around day 3 in long-term cold stress while responded little to short-term cold stress. In addition, in the second heat stress after 2 days of recovery, oysters showed milder expression in these genes and a lower mortality rate, which indicated the existence of plasticity in the oyster’s response to heat stress. We confirmed that homeostatic flexibility and anti-apoptosis might be crucial centers of temperature stress responses in oysters. Furthermore, we analyzed stress gene families in 11 different species and found that the linage-specific expansion of stress genes might be implicated in adaptive evolution. These results indicated that both plasticity and evolution played an important role in the stress response adaptation of oysters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700