An optimization approach for producing carbon nanotubes involving economic and safety objectives
详细信息    查看全文
  • 作者:Julia Hernández-Vargas ; Juan Martinez-Gomez
  • 关键词:Carbon nanotubes synthesis ; Optimization ; Optimal synthesis ; Minimum cost of carbon nanotubes ; Safety of carbon nanotubes
  • 刊名:Clean Technologies and Environmental Policy
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:17
  • 期:8
  • 页码:2185-2195
  • 全文大小:860 KB
  • 参考文献:Agboola AE, Pike RW, Hertwig T, Lou HH (2007) Conceptual design of carbon nanotube processes. Clean Technol Environ Policy 9:289-11CrossRef
    Brooke A, Kendrick D, Meeruas A, Raman R (2015) GAMS-language guide. GAMS Development Corp, Washington, DC
    Choon-Ming S, Siang-Piao Ch, Abdul RM (2011) Synthesis of aligned carbon nanotubes. Review. Carbon 49:4613-635CrossRef
    Gutiérrez-Arriaga CG, Serna-González M, Ponce-Ortega JM, El-Halwagi MM (2013) Multi-objective optimization of steam power plants for sustainable generation of electricity. Clean Technol Environ Policy 15:551-66CrossRef
    Hernández-Vargas J, González-Campos JB, Lara-Romero J, Ponce-Ortega JM (2013) A mathematical programming approach for the optimal synthesis of nanofibers through an electrospinning process. ACS Sustain Chem Eng 2:454-64CrossRef
    Hornbostel B, Haluska M, Cech J, Dettlaff U, Roth S (2006) Arc discharge and laser ablation synthesis of singlewalled carbon nanotubes. Carbon Nanotub 222:1-8CrossRef
    Julklang W, Golman B (2015) Numerical simulation of spray drying of hydroxyapatite nanoparticles. Clean Technol Environ Policy. doi:10.-007/?s10098-015-0931-z (in press)
    Katao K (2006) Nanomaterials may call for a reconsideration of the present Japanese chemical regulatory system. Clean Technol Environ Policy 8:251-59CrossRef
    Klemes JJ (2015) Assessing and measuring environmental impact and sustainability. Clean Technol Environ Policy. doi:10.-007/?s10098-015-0930-0 (in press)
    Lanone S, Andujar P, Kermanizadeh A, Boczkowski J (2013) Determinants of carbon nanotube toxicity. Adv Drug Deliv Rev 65:2063-069CrossRef
    Liu W-W, Chai S-P, Mohamed AR, Hashim U (2014) Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. J Ind Eng Chem 20:1171-185CrossRef
    Melezhyk AV, Rukhov AV, Tugolukov EN, Tkachev AG (2013) Some aspects of carbon nanotubes technology. Nanosyst: Phys Chem Math 4:247-59
    Meyer DE, Upadhyayula VKK (2014) The use of life cycle tools to support decision making for sustainable nanotechnologies. Clean Technol Environ Policy 16(4):757-72CrossRef
    Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11-5CrossRef
    Mubarak N, Abdullah E, Jayakumar N, Sahu J (2014) An overview on methods for the production of carbon nanotubes. J Ind Eng Chem 20:1186-197CrossRef
    Ng K-W, Lam W-H, Pichiah S (2013) A review on potential applications of carbon nanotubes in marine current turbines. Renew Sustain Energy Rev 28:331-39CrossRef
    Palaniappan C, Srinivasan R, Tan R (2004) Selection of inherently safer process routes: a case study. Chem Eng Process 43:641-47CrossRef
    Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21:15872-5884CrossRef
    Rivera JL, Sutherland JW (2015) A design of experiments (DOE) approach to data uncertainty in LCA: application to nanotechnology evaluation. Clean Technol Environ Policy. doi:10.-007/?s10098-014-0890-9
    SCRI (2013) http://?www.?dinamicaheuristi?ca.?com/?index.?html . Accessed 12 Sept 2014
    Shi Z, Lian Y, Liao FH, Zhou X, Gu Z, Zhang Y, Iijima S, Li H, Yue KT, Zhang S-L (2000) Large scale synthesis of single-wall carbon nanotubes by arc-discharge method. J Phys Chem Solids 61:1031-036CrossRef
    Szabó A, Perri C, Csató A, Giordano G, Vuono D, Nagy JB (2010) Synthesis methods of carbon nanotubes and related materials. Materials 3:3092-140CrossRef
    Uo M, Akasaka T, Watari F, Sato Y, Tohji K (2011) Toxicity evaluations of various carbon nanomaterials. Dent Mater J 30:245-63CrossRef
    Xiang R, Einarsson E, Murakami Y, Shiomi J, Chiashi S, Tang Z, Maruyama S (2012) Diameter modulation of vertically aligned single-walled carbon nanotubes. ACS Nano 6:7472-479CrossRef
    Zhao T, Liu Y, Zhu J (2005) Temperature and catalyst effects on the production of amorphous carbon nanotubes by a modified arc discharge. Carbon 43:2907-912CrossRef
  • 作者单位:Julia Hernández-Vargas (1) (2)
    Juan Martinez-Gomez (2)
    J. Betzabe González-Campos (1)
    Javier Lara-Romero (2)
    José María Ponce-Ortega (2)

    1. Institute of Chemical and Biological Researches, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
    2. Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Industrial Chemistry and Chemical Engineering
    Industrial Pollution Prevention
    Environmental Economics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-9558
文摘
The unique properties of carbon nanotubes (CNTs) make them suitable for an incredible range of applications in materials science, electronics, energy management, and many other fields. CNTs can be manipulated chemically and physically in very useful ways, and their final properties and dimensions strongly depend on the parameters and the nature of the method used for their synthesis, this is why many methods of synthesis have been reported. Several key parameters and operating conditions have to be manipulated to produce CNTs with suitable properties for future applications, and it is evident that all these methods of synthesis need to be optimized. This paper presents an optimization approach for determining the best synthesis method and their corresponding operating conditions for synthesizing carbon nanotubes accounting for technical and economic issues as objective functions for a desired application. Proper correlations for the interaction between the considered variables are proposed, and these correlations are based on experimental data taken from literature. A case study considering three synthesis methods of carbon nanotubes (arc discharge, laser ablation, and chemical vapor deposition) is presented. The results indicate that the safest technology with the minimum cost and maximum efficiency was chemical vapor decomposition using turpentine as carbon source (with a cost of 0.374 USD/g, and 0.00088 % fatalities for exposure to 0.1 g of catalyst and 0.000006 % of fatalities per exposure to 4 g of carbon source during 8 min of processing). Keywords Carbon nanotubes synthesis Optimization Optimal synthesis Minimum cost of carbon nanotubes Safety of carbon nanotubes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700