Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems
详细信息    查看全文
  • 作者:Sunil A. Patil ; Cecilia H?gerh?ll ; Lo Gorton
  • 关键词:Microbial extracellular electron transfer ; Microbe–electrode interactions ; Bioelectrochemical systems ; c ; type cytochromes ; Redox mediators ; Nanowires ; Cyclic voltammetry
  • 刊名:Bioanalytical Reviews
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:4
  • 期:2-4
  • 页码:159-192
  • 全文大小:2221KB
  • 参考文献:1. Hernandez ME, Newman DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58:1562-571 CrossRef
    2. Heijnen JJ (1999) Bioenergetics of microbial growth. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, bioseparation. Wiley, New York, pp 267-91
    3. Rabaey K, Angenent L, Schr?der U, Keller J (eds) (2010) Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. IWA, London
    4. Logan BE, Hamelers B, Rozendal R, Schr?der U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181-192 CrossRef
    5. Kato S, Hashimoto K, Watanabe K (2012) Microbial interspecies electron transfer via electric currents through conductive minerals. Proc Natl Acad Sci USA. doi:10.1073/pnas.1117592109
    6. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472-480
    7. Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319-321 CrossRef
    8. Bentley A, Atkinson A, Jezek J, Rawson DM (2001) Whole cell biosensors—electrochemical and optical approaches to ecotoxicity testing. Toxicol in Vitro 15:469-75 CrossRef
    9. Pasco N, Weld R, Hay J, Gooneratne R (2011) Development and applications of whole cell biosensors for ecotoxicity testing. Anal Bioanal Chem 400:931-45 CrossRef
    10. Shimomura-Shimizu M, Karube I (2010) Applications of microbial cell sensors. In: Belkin S, Gu MB (eds) Whole cell sensing system II, vol 118. Springer, Berlin, pp 1-0 CrossRef
    11. Nakamura H, Shimomura-Shimizu M, Karube I (2008) Development of microbial sensors and their application. In: Renneberg R, Lisdat F (eds) Biosensing for the 21st century, vol 109. Springer, Berlin, pp 351-94 CrossRef
    12. Ding L, Du D, Zhang X, Ju H (2008) Trends in cell-based electrochemical biosensors. Curr Med Chem 15:3160-170 CrossRef
    13. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788-799 CrossRef
    14. Arends JBA, Verstraete W (2012) 100?years of microbial electricity production: three concepts for the future. Microb Biotechnol 5:333-46 CrossRef
    15. Schr?der U (2011) Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year-old discovery. J Solid State Electr 15:1481-486 CrossRef
    16. Potter MC (1912) Electrical effects accompanying the decomposition of organic compounds. Proc Roy Soc London (B) 84:260-76 CrossRef
    17. Cohen B (1931) The bacterial culture as an electrical half-cell. J Bacteriol 21:18-9
    18. Lewis K (1966) Biochemical fuel cells. Bacteriol Rev 30:101-13
    19. Canfield JH, Goldner BH, Lutwack R (1963) Utilization of human wastes as electrochemical fuels. In: NASA Technical Report, Magna Corporation, Anaheim CA. p 63
    20. Davis JB, Yarbrough HF (1962) Preliminary experiments on a microbial fuel cell. Science 137:615-16 CrossRef
    21. Ardeleanu I, Mǎrgineanu D-G, Vais H (1983) Electrochemical conversion in biofuel cells using / Clostridium butyricum or / Staphylococcus aureus Oxford. Bioelectrochem Bioenerg 11:273-77 CrossRef
    22. Karube I, Matsunga T, Tsuru S, Suzuki S (1977) Biochemical fuel cell utilizing immobilized cells of / Clostridium butyricum. Biotechnol Bioeng 21:1727-733 CrossRef
    23. Bennetto HP, Stirling JL, Tanaka K, Vega CA (1983) Anodic reactions in microbial fuel cells. Biotechnol Bioeng 25:559-68 CrossRef
    24. Akiba T, Bennetto HP, Stirling JL, Tanaka K (1987) Electricity production from alkalophilic organisms. Biotechnol Lett 9:611-16 CrossRef
    25. Tanaka K, Tamamushi R, Ogawa T (1985) Bioelectrochemical fuel-cells operated by the cyanobacterium, / Anabaena variabilis. J Chem Technol Biot 35:191-97 CrossRef
    26. Allen RM, Bennetto HP (1993) Microbial fuel cells: electricity production from carbohydrates. Appl Biochem Biotech 39(40):27-0 CrossRef
    27. Zhang X-C, Halme A (1985) Modelling of a microbial fuel cell process. Biotechnol Lett 17:809-14 CrossRef
    28. Kim BH, Ikeda T, Park HS, Kim HJ, Hyun MS, Kano K, Takagi K, Tatsumi H (1999) Electrochemical activity of an Fe(III)-reducing bacterium, / Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech 13:475-78 CrossRef
    29. Yang Y, Sun G, Xu M (2011) Microbial fuel cells come of age. J Chem Technol Biot 86:625-32 CrossRef
    30. Oh ST, Kim JR, Premier GC, Lee TH, Kim C, Sloan WT (2011) Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 28:871-81 CrossRef
    31. Logan B (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biot 85:1665-671 CrossRef
    32. Logan BE (2008) Microbial fuel cells. Wiley, New York
    33. Thrash JC, Coates JD (2008) Review: direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol 42:3921-931 CrossRef
    34. Park DH, Zeikus JG (1999) Utilization of electrically reduced neutral red by / Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:2403-410
    35. Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65:2912-917
    36. Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940-43 CrossRef
    37. ter Heijne A, Hamelers HVM, de Wilde V, Rozendal RA, Buisman CJN (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40:5200-205 CrossRef
    38. Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666-671 CrossRef
    39. He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanal 18:2009-015 CrossRef
    40. Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresource Technol 102:324-33 CrossRef
    41. Huang L, Regan JM, Quan X (2011) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technol 102:316-23 CrossRef
    42. Erable B, Féron D, Bergel A (2012) Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review. ChemSusChem 5:975-87 CrossRef
    43. ter Heijne A, Strik DPBTB, Hamelers HVM, Buisman CJN (2010) Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells. Environ Sci Technol 44:7151-156 CrossRef
    44. Rabaey K, Read ST, Clauwaert P, Freguia S, Bond PL, Blackall LL, Keller J (2008) Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J 2:519-27 CrossRef
    45. Chung K, Fujiki I, Okabe S (2011) Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell. Bioresource Technol 102:355-60 CrossRef
    46. Cournet A, Bergé M, Roques C, Bergel A, Délia M-L (2010) Electrochemical reduction of oxygen catalyzed by / Pseudomonas aeruginosa. Electrochim Acta 55:4902-908 CrossRef
    47. Clauwaert P, van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564-569 CrossRef
    48. Prasad D, Sivaram TK, Berchmans S, Yegnaraman V (2006) Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent. J Power Sources 160:991-96 CrossRef
    49. Bergel A, Féron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900-04 CrossRef
    50. Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596-04 CrossRef
    51. Lefebvre O, Al-Mamun A, Ng HY (2008) A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci Technol 58:881-85 CrossRef
    52. Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354-360 CrossRef
    53. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energ 31:1632-640 CrossRef
    54. Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA 104:18871-8873 CrossRef
    55. Rinaldi A, Mecheri B, Garavaglia V, Licoccia S, Di Nardo P, Traversa E (2008) Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energ Environ Sci 1:417-29 CrossRef
    56. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1:e00103–e00110 CrossRef
    57. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706-16 CrossRef
    58. Lovley DR, Nevin KP (2011) A shift in the current: new applications and concepts for microbe-electrode electron exchange. Curr Opin Biotech 22:441-48 CrossRef
    59. Virdis B, Read ST, Rabaey K, Rozendal RA, Yuan Z, Keller J (2011) Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. Bioresource Technol 102:334-41 CrossRef
    60. Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microb 77:2882-886 CrossRef
    61. Wrighton KC, Virdis B, Clauwaert P, Read ST, Daly RA, Boon N, Piceno Y, Andersen GL, Coates JD, Rabaey K (2010) Bacterial community structure corresponds to performance during cathodic nitrate reduction. ISME J 4:1443-455 CrossRef
    62. Strycharz SM, Gannon SM, Boles AR, Franks AE, Nevin KP, Lovley DR (2010) Reductive dechlorination of 2-chlorophenol by / Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environ Microbiol Reports 2:289-94 CrossRef
    63. Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752-755 CrossRef
    64. Fu L, You S-J, Yang F-L, Gao M-M, Fang X-H, Zhang G-Q (2010) Synthesis of hydrogen peroxide in microbial fuel cell. J Chem Technol Biot 85:715-19 CrossRef
    65. Butler CS, Clauwaert P, Green SJ, Verstraete W, Nerenberg R (2010) Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ Sci Technol 44:4685-691 CrossRef
    66. Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159-165 CrossRef
    67. Mu Y, Rozendal RA, Rabaey K, Keller J (2009) Nitrobenzene removal in bioelectrochemical systems. Environ Sci Technol 43:8690-695 CrossRef
    68. Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12:1011-020 CrossRef
    69. Mu Y, Rabaey K, Rozendal RA, Yuan Z, Keller J (2009) Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol 43:5137-143 CrossRef
    70. Jacobson KS, Drew DM, He Z (2011) Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresource Technol 102:376-80 CrossRef
    71. Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148-152 CrossRef
    72. Kim Y, Logan BE (2012) Microbial desalination cells for energy production and desalination. Desalination. http://dx.doi.org/10.1016/j.desal.2012.07.022
    73. Mehanna M, Basséguy R, Délia M-L, Bergel A (2010) / Geobacter sulfurreducens can protect 304?L stainless steel against pitting in conditions of low electron acceptor concentrations. Electrochem Commun 12:724-28 CrossRef
    74. ter Heijne A, Liu F, Weijden RVD, Weijma J, Buisman CJN, Hamelers HVM (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 44:4376-381 CrossRef
    75. Villano M, De Bonis L, Rossetti S, Aulenta F, Majone M (2011) Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents. Bioresource Technol 102:3193-199 CrossRef
    76. Jeremiasse AW, Hamelers HVM, Buisman CJN (2010) Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78:39-3 CrossRef
    77. Geelhoed JS, Stams AJM (2010) Electricity-assisted biological hydrogen production from acetate by / Geobacter sulfurreducens. Environ Sci Technol 45:815-20 CrossRef
    78. Aulenta F, Catapano L, Snip L, Villano M, Majone M (2012) Linking bacterial metabolism to graphite cathodes: electrochemical insights into the H2-producing capability of / Desulfovibrio sp. ChemSusChem 5:1080-085 CrossRef
    79. Modin O, Fukushi K (2012) Development and testing of bioelectrochemical reactors converting wastewater organics into hydrogen peroxide. Water Sci Technol 66:831-36 CrossRef
    80. van Eerten-Jansen MCAA, ter Heijne A, Buisman CJN, Hamelers HVM (2012) Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives. Int J Energ Res 36:809-19 CrossRef
    81. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresource Technol 101:3085-090 CrossRef
    82. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953-958 CrossRef
    83. Luo H, Jenkins PE, Ren Z (2010) Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ Sci Technol 45:340-44 CrossRef
    84. Di Lorenzo M, Curtis TP, Head IM, Scott K (2009) A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res 43:3145-154 CrossRef
    85. Stein NE, Keesman KJ, Hamelers HVM, van Straten G (2011) Kinetic models for detection of toxicity in a microbial fuel cell based biosensor. Biosens Bioelectron 26:3115-120 CrossRef
    86. Peixoto L, Min B, Martins G, Brito AG, Kroff P, Parpot P, Angelidaki I, Nogueira R (2011) In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry 81:99-03 CrossRef
    87. Dávila D, Esquivel JP, Sabaté N, Mas J (2011) Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron 26:2426-430 CrossRef
    88. Di Lorenzo M, Curtis TP, Head IM, Velasquez-Orta SB, Scott K (2009) A single chamber packed bed microbial fuel cell biosensor for measuring organic content of wastewater. Water Sci Technol 60:2879-887 CrossRef
    89. Tront JM, Fortner JD, Pl?tze M, Hughes JB, Puzrin AM (2008) Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens Bioelectron 24:586-90 CrossRef
    90. Kumlanghan A, Liu J, Thavarungkul P, Kanatharana P, Mattiasson B (2007) Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosens Bioelectron 22:2939-944 CrossRef
    91. Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541-45 CrossRef
    92. Patil S, Harnisch F, Schr?der U (2010) Toxicity response of electroactive microbial biofilms—a decisive feature for potential biosensor and power source applications. Chemphyschem 11:2834-837 CrossRef
    93. Harnisch F, Schr?der U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433-448 CrossRef
    94. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291-98 CrossRef
    95. Hochella MF, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631-635 CrossRef
    96. Nealson K, Belz A, McKee B (2002) Breathing metals as a way of life: geobiology in action. A Van Leeuw 81:215-22 CrossRef
    97. Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259-87
    98. Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752-64 CrossRef
    99. Nealson KH, Finkel SE (2011) Electron flow and biofilms. MRS Bull 36:380-84 CrossRef
    100. Lovley DR (1993) Dissimilatory metal reduction. Annu Rev Microbiol 47:263-90 CrossRef
    101. Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 48:311-43 CrossRef
    102. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JLM, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM (2008) Towards environmental systems biology of / Shewanella. Nat Rev Microbiol 6:592-03 CrossRef
    103. Lonergan DJ, Jenter HL, Coates JD, Phillips EJ, Schmidt TM, Lovley DR (1996) Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402-408
    104. Lovley DR (1995) Microbial reduction of iron, manganese, and other metals. In: Donald LS (ed) Advances in agronomy, vol 54. Academic, New York, pp 175-31
    105. Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru A-E Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) / Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Microb Physiol 59:1-00 CrossRef
    106. Mahadevan R, Palsson B?, Lovley DR (2011) In situ to in silico and back: elucidating the physiology and ecology of / Geobacter spp. using genome-scale modelling. Nat Rev Microbiol 9:39-0 CrossRef
    107. Nealson K, Scott J (2006) Ecophysiology of the genus / Shewanella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 1133-151 CrossRef
    108. Carmona-Martinez AA, Harnisch F, Kuhlicke U, Neu TR, Schr?der U (2012) Electron transfer and biofilm formation of / Shewanella putrefaciens as function of anode potential. Bioelectrochemistry. doi:10.1016/j.bioelechem.2012.05.002
    109. Yang Y, Xu M, Guo J, Sun G (2012) Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem http://dx.doi.org/10.1016/j.procbio.2012.07.032
    110. Yuan Y, Ahmed J, Zhou L, Zhao B, Kim S (2011) Carbon nanoparticles-assisted mediator-less microbial fuel cells using / Proteus vulgaris. Biosens Bioelectron 27:106-12 CrossRef
    111. Kim N, Choi Y, Jung S, Kim S (2000) Effect of initial carbon sources on the performance of microbial fuel cells containing / Proteus vulgaris. Biotechnol Bioeng 70:109-14 CrossRef
    112. Venkataraman A, Rosenbaum M, Arends JBA, Halitschke R, Angenent LT (2010) Quorum sensing regulates electric current generation of / Pseudomonas aeruginosa PA14 in bioelectrochemical systems. Electrochem Commun 12:459-62 CrossRef
    113. Pham T, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, H?fte M, Verstraete W, Rabaey K (2008) Metabolites produced by / Pseudomonas sp. enable gram positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biot 77:1119-129 CrossRef
    114. Timur S, Haghighi B, Tkac J, Pazarlioglu N, Telefoncu A, Gorton L (2007) Electrical wiring of / Pseudomonas putida and / Pseudomonas fluorescens with osmium redox polymers. Bioelectrochemistry 71:38-5 CrossRef
    115. Weld RJ, Glithero N, Pasco N (2011) / Escherichia coli knock-out mutants with altered electron transfer activity in the Micredox? assay and in microbial fuel cells. Int J Environ Anal Chem 91:138-49 CrossRef
    116. Veer Raghavulu S, Sarma PN, Venkata Mohan S (2011) Comparative bioelectrochemical analysis of / Pseudomonas aeruginosa and / Escherichia coli with anaerobic consortia as anodic biocatalyst for biofuel cell application. J Appl Microbiol 110:666-74 CrossRef
    117. Xia X, Cao X-X, Liang P, Huang X, Yang S-P, Zhao G-G (2010) Electricity generation from glucose by a / Klebsiella sp. in microbial fuel cells. Appl Microbiol Biot 87(1):383-90 CrossRef
    118. Deng L, Li F, Zhou S, Huang D, Ni J (2010) A study of electron-shuttle mechanism in / Klebsiella pneumoniae based-microbial fuel cells. Chinese Sci Bull 55:99-04 CrossRef
    119. Zhang L, Zhou S, Zhuang L, Li W, Zhang J, Lu N, Deng L (2008) Microbial fuel cell based on / Klebsiella pneumoniae biofilm. Electrochem Commun 10:1641-643 CrossRef
    120. Nimje VR, Chen C-Y, Chen C-C, Jean J-S, Reddy AS, Fan C-W, Pan K-Y, Liu H-T, Chen J-L (2009) Stable and high energy generation by a strain of / Bacillus subtilis in a microbial fuel cell. J Power Sources 190(2):258-63 CrossRef
    121. Liu M, Yuan Y, Zhang L-X, Zhuang L, Zhou S-G, Ni J-R (2010) Bioelectricity generation by a Gram-positive / Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells. Bioresource Technol 101:1807-811 CrossRef
    122. Alferov S, Coman V, Gustavsson T, Reshetilov A, von Wachenfeldt C, H?gerh?ll C, Gorton L (2009) Electrical communication of cytochrome enriched / Escherichia coli JM109 cells with graphite electrodes. Electrochim Acta 54:4979-984 CrossRef
    123. Coman V, Gustavsson T, Finkelsteinas A, von Wachenfeldt C, H?gerh?ll C, Gorton L (2009) Electrical wiring of live, metabolically enhanced / Bacillus subtilis cells with flexible osmium-redox polymers. J Am Chem Soc 131:16171-6176 CrossRef
    124. Schaetzle O, Barriere F, Baronian K (2008) Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from microorganisms to electrodes for green electricity. Energ Environ Sci 1:607-20 CrossRef
    125. Sharma V, Kundu PP (2010) Biocatalysts in microbial fuel cells. Enzyme Microb Tech 47(5):179-88 CrossRef
    126. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375-81 CrossRef
    127. Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1:9-8 CrossRef
    128. Kiely PD, Regan JM, Logan BE (2011) The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Curr Opin Biotech 22:378-85 CrossRef
    129. Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2:1146-156 CrossRef
    130. Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche YS, Kapadnis BP (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresource Technol 100:5132-139 CrossRef
    131. Jung S, Regan J (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biot 77:393-02 CrossRef
    132. Chae K-J, Choi M-J, Lee J-W, Kim K-Y, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource Technol 100:3518-525 CrossRef
    133. Raghavulu SV, Goud RK, Sarma PN, Mohan SV (2011) / Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: Influence of redox condition and substrate load. Bioresource Technol 102:2751-757 CrossRef
    134. Ducommun R, Favre M-F, Carrard D, Fischer F (2010) Outward electron transfer by / Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor. Yeast 27:139-48
    135. Walker AL, Walker CW Jr (2006) Biological fuel cell and an application as a reserve power source. J Power Sources 160:123-29 CrossRef
    136. Haslett ND, Rawson FJ, Barri?re F, Kunze G, Pasco N, Gooneratne R, Baronian KHR (2011) Characterisation of yeast microbial fuel cell with the yeast / Arxula adeninivorans as the biocatalyst. Biosens Bioelectron 26:3742-747 CrossRef
    137. Shkil H, Schulte A, Guschin DA, Schuhmann W (2011) Electron transfer between genetically modified / Hansenula polymorpha yeast cells and electrode surfaces via Os-complex modified redox polymers. Chemphyschem 12:806-13 CrossRef
    138. Prasad D, Arun S, Murugesan M, Padmanaban S, Satyanarayanan RS, Berchmans S, Yegnaraman V (2007) Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosens Bioelectron 22:2604-610 CrossRef
    139. Babanova S, Hubenova Y, Mitov M (2011) Influence of artificial mediators on yeast-based fuel cell performance. J Biosci Bioeng 112:379-87 CrossRef
    140. Richter H, Lanthier M, Nevin KP, Lovley DR (2007) Lack of electricity production by / Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes. Appl Environ Microbiol 73:5347-353 CrossRef
    141. Dumas C, Basseguy R, Bergel A (2008) Microbial electrocatalysis with / Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim Acta 53:2494-500 CrossRef
    142. Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR (2011) Towards electrosynthesis in / Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One 6:e16649 CrossRef
    143. Liu H, Matsuda S, Hashimoto K, Nakanishi S (2012) Flavins secreted by bacterial cells of / Shewanella catalyze cathodic oxygen reduction. Chem Sus Chem 5:1054-058
    144. Hsu L, Masuda SA, Nealson KH, Pirbazari M (2012) Evaluation of microbial fuel cell / Shewanella biocathodes for treatment of chromate contamination. RSC Adv 2:5844-855 CrossRef
    145. Cournet A, Délia M-L, Bergel A, Roques C, Bergé M (2010) Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive. Electrochem Commun 12:505-08 CrossRef
    146. Cheng KY, Ho G, Cord-Ruwisch R (2009) Anodophilic biofilm catalyzes cathodic oxygen reduction. Environ Sci Technol 44:518-25 CrossRef
    147. Erable B, Vandecandelaere I, Faimali M, Délia M-L, Etcheverry L, Vandamme P, Bergel A (2010) Marine aerobic biofilm as biocathode catalyst. Bioelectrochemistry 78:51-6 CrossRef
    148. Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2007) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629-34 CrossRef
    149. Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Reports 3:27-5 CrossRef
    150. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219-86 CrossRef
    151. Fredrickson JK, Zachara JM (2008) Electron transfer at the microbe–mineral interface: a grand challenge in biogeochemistry. Geobiology 6:245-53 CrossRef
    152. Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr)oxides by / Shewanella and / Geobacter: a key role for multihaem / c-type cytochromes. Mol Microbiol 65:12-0 CrossRef
    153. Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energ Environ Sci 4:4896-906 CrossRef
    154. Richardson DJ, Butt JN, Fredrickson JK, Zachara JM, Shi L, Edwards MJ, White G, Baiden N, Gates AJ, Marritt SJ, Clarke TA (2012) The ‘porin–cytochrome-model for microbe-to-mineral electron transfer. Mol Microbiol 85:201-12 CrossRef
    155. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by / Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358-1363 CrossRef
    156. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098-101 CrossRef
    157. Esteve-Nú?ez A, Sosnik J, Visconti P, Lovley DR (2008) Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in / Geobacter sulfurreducens. Environ Microbiol 10:497-05 CrossRef
    158. Peng L, You S-J, Wang J-Y (2010) Electrode potential regulates cytochrome accumulation on / Shewanella oneidensis cell surface and the consequence to bioelectrocatalytic current generation. Biosens Bioelectron 25:2530-533 CrossRef
    159. Lovley DR (2008) Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology 6:225-31 CrossRef
    160. Qian X, Mester T, Morgado L, Arakawa T, Sharma ML, Inoue K, Joseph C, Salgueiro CA, Maroney MJ, Lovley DR (2011) Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in / Geobacter sulfurreducens. BBA Bioenergetics 1807:404-12 CrossRef
    161. Tremblay P-L, Summers ZM, Glaven RH, Nevin KP, Zengler K, Barrett CL, Qiu Y, Palsson BO, Lovley DR (2011) A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in / Geobacter sulfurreducens revealed by adaptive evolution. Environ Microbiol 13:13-3 CrossRef
    162. Shi L, Richardson DJ, Wang Z, Kerisit SN, Rosso KM, Zachara JM, Fredrickson JK (2009) The roles of outer membrane cytochromes of / Shewanella and / Geobacter in extracellular electron transfer. Environ Microbiol Reports 1:220-27 CrossRef
    163. Richter K, Schicklberger M, Gescher J (2012) Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78:913-21 CrossRef
    164. Holmes DE, Mester T, O’Neil RA, Perpetua LA, Larrahondo MJ, Glaven R, Sharma ML, Ward JE, Nevin KP, Lovley DR (2008) Genes for two multicopper proteins required for Fe(III) oxide reduction in / Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes. Microbiology 154:1422-435 CrossRef
    165. Voordeckers JW, Kim B-C, Izallalen M, Lovley DR (2010) Role of / Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate. Appl Environ Microbiol 76:2371-375 CrossRef
    166. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) / Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968-973 CrossRef
    167. von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by / Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615-23 CrossRef
    168. Lovley DR, Fraga JL, Blunt-Harris EL, Hayes LA, Phillips EJP, Coates JD (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydroch Hydrob 26:152-57 CrossRef
    169. Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94-7 CrossRef
    170. Pierson L, Pierson E (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biot 86:1659-670 CrossRef
    171. Lies DP, Hernandez ME, Kappler A, Mielke RE, Gralnick JA, Newman DK (2005) / Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl Environ Microbiol 71:4414-426 CrossRef
    172. Jeans C, Singer SW, Chan CS, VerBerkmoes NC, Shah M, Hettich RL, Banfield JF, Thelen MP (2008) Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community. ISME J 2:542-50 CrossRef
    173. Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561-83 CrossRef
    174. Castelle C, Guiral M, Malarte G, Ledgham F, Leroy G, Brugna M, Giudici-Orticoni M-T (2008) A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile / Acidithiobacillus ferrooxidans. J Biol Chem 283:25803-5811 CrossRef
    175. Yarzábal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA, Bonnefoy V (2002) The high-molecular-weight cytochrome c Cyc2 of / Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184:313-17 CrossRef
    176. Singer SW, Chan CS, Zemla A, VerBerkmoes NC, Hwang M, Hettich RL, Banfield JF, Thelen MP (2008) Characterization of cytochrome 579, an unusual cytochrome isolated from an iron-oxidizing microbial community. Appl Environ Microbiol 74:4454-462 CrossRef
    177. Bond DR, Lovley DR (2003) Electricity production by / Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548-555 CrossRef
    178. Okamoto A, Hashimoto K, Nakamura R (2012) Long-range electron conduction of / Shewanella biofilms mediated by outer membrane c-type cytochromes. Bioelectrochemistry 85:61-5 CrossRef
    179. Busalmen JP, Esteve-Nú?ez A, Berná A, Feliu JM (2008) C-type cytochromes wire electricity-producing bacteria to electrodes. Angew Chem Int Edit 47:4874-877 CrossRef
    180. El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from / Shewanella oneidensis MR-1. Proc Natl Acad Sci USA 107:18127-8131 CrossRef
    181. Rabaey K, Boon N, H?fte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401-408 CrossRef
    182. Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292-297 CrossRef
    183. Tang X, Du Z, Li H (2010) Anodic electron shuttle mechanism based on 1-hydroxy-4-aminoanthraquinone in microbial fuel cells. Electrochem Commun 12:1140-143 CrossRef
    184. Feng C, Ma L, Li F, Mai H, Lang X, Fan S (2010) A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens Bioelectron 25:1516-520 CrossRef
    185. Rosenbaum M, Zhao F, Schr?der U, Scholz F (2006) Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell. Angew Chem Int Edit 45:6658-661 CrossRef
    186. Niessen J, Schr?der U, Rosenbaum M, Scholz F (2004) Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun 6:571-75 CrossRef
    187. Schr?der U, Nie?en J, Scholz F (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chem Int Edit 42:2880-883 CrossRef
    188. Inoue K, Qian X, Morgado L, Kim B-C, Mester T, Izallalen M, Salgueiro CA, Lovley DR (2010) Purification and characterization of OmcZ, an outer-Surface, octaheme c-type cytochrome essential for optimal current production by / Geobacter sulfurreducens. Appl Environ Microbiol 76:3999-007 CrossRef
    189. Yi H, Nevin KP, Kim B-C, Franks AE, Klimes A, Tender LM, Lovley DR (2009) Selection of a variant of / Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498-503 CrossRef
    190. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in / Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345-348 CrossRef
    191. Malvankar NS, Lovley DR (2012) Microbial nanowires, a new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5:1039-046 CrossRef
    192. Meitl LA, Eggleston CM, Colberg PJS, Khare N, Reardon CL, Shi L (2009) Electrochemical interaction of / Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes. Geochim Cosmochim Ac 73:5292-307 CrossRef
    193. Bouhenni RA, Vora GJ, Biffinger JC, Shirodkar S, Brockman K, Ray R, Wu P, Johnson BJ, Biddle EM, Marshall MJ, Fitzgerald LA, Little BJ, Fredrickson JK, Beliaev AS, Ringeisen BR, Saffarini DA (2010) The role of / Shewanella oneidensis MR-1 outer surface structures in extracellular electron transfer. Electroanal 22:856-64 CrossRef
    194. Inoue K, Leang C, Franks AE, Woodard TL, Nevin KP, Lovley DR (2011) Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of / Geobacter sulfurreducens. Environ Microbiol Reports 3:211-17 CrossRef
    195. Busalmen JP, Esteve-Nú?ez A, Feliu JM (2008) Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport. Environ Sci Technol 42:2445-450 CrossRef
    196. Fricke K, Harnisch F, Schr?der U (2008) On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energ Environ Sci 1:144-47 CrossRef
    197. Marsili E, Sun J, Bond DR (2010) Voltammetry and growth physiology of / Geobacter sulfurreducens biofilms as a function of growth stage and imposed electrode potential. Electroanal 22:865-74 CrossRef
    198. Srikanth S, Marsili E, Flickinger MC, Bond DR (2008) Electrochemical characterization of / Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnol Bioeng 99:1065-073 CrossRef
    199. Marsili E, Rollefson JB, Baron DB, Hozalski RM, Bond DR (2008) Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Appl Environ Microbiol 74:7329-337 CrossRef
    200. Richter H, Nevin KP, Jia H, Lowy DA, Lovley DR, Tender LM (2009) Cyclic voltammetry of biofilms of wild type and mutant / Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energ Environ Sci 2:506-16 CrossRef
    201. Strycharz-Glaven SM, Tender LM (2012) Study of the mechanism of catalytic activity of / G. sulfurreducens biofilm anodes during biofilm growth. ChemSusChem 5:1106-118 CrossRef
    202. Strycharz SM, Malanoski AP, Snider RM, Yi H, Lovley DR, Tender LM (2011) Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of / Geobacter sulfurreducens strain DL1 vs. variant strain KN400. Energ Environ Sci 4:896-13 CrossRef
    203. Zhu X, Yates MD, Logan BE (2012) Set potential regulation reveals additional oxidation peaks of / Geobacter sulfurreducens anodic biofilms. Electrochem Commun 22:116-19 CrossRef
    204. Holmes DE, Chaudhuri SK, Nevin KP, Mehta T, Methé BA, Liu A, Ward JE, Woodard TL, Webster J, Lovley DR (2006) Microarray and genetic analysis of electron transfer to electrodes in / Geobacter sulfurreducens. Environ Microbiol 8:1805-815 CrossRef
    205. Nevin KP, Kim B-C, Glaven RH, Johnson JP, Woodard TL, Methé BA, DiDonato RJ, Covalla SF, Franks AE, Liu A, Lovley DR (2009) Anode biofilm transcriptomics reveals outer surface components essential for high density current production in / Geobacter sulfurreducens fuel cells. PLoS One 4:e5628 CrossRef
    206. Kim B-C, Postier BL, DiDonato RJ, Chaudhuri SK, Nevin KP, Lovley DR (2008) Insights into genes involved in electricity generation in / Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant. Bioelectrochemistry 73:70-5 CrossRef
    207. Busalmen JP, Esteve-Nu?ez A, Berná A, Feliu JM (2010) ATR-SEIRAs characterization of surface redox processes in / G. sulfurreducens. Bioelectrochemistry 78:25-9 CrossRef
    208. Malvankar NS, Tuominen MT, Lovley DR (2012) Biofilm conductivity is a decisive variable for high-current-density / Geobacter sulfurreducens microbial fuel cells. Energ Environ Sci 5:5790-797 CrossRef
    209. Malvankar NS, Mester T, Tuominen MT, Lovley DR (2012) Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria. Chemphyschem 13:463-68 CrossRef
    210. Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J, Beliaev AS, Bouhenni R, Saffarini D, Mansfeld F, Kim B-H, Fredrickson JK, Nealson KH (2007) Current production and metal oxide reduction by / Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol 73:7003-012 CrossRef
    211. Hartshorne RS, Reardon CL, Ross D, Nuester J, Clarke TA, Gates AJ, Mills PC, Fredrickson JK, Zachara JM, Shi L, Beliaev AS, Marshall MJ, Tien M, Brantley S, Butt JN, Richardson DJ (2009) Characterization of an electron conduit between bacteria and the extracellular environment. Proc Natl Acad Sci USA 106:22169-2174 CrossRef
    212. Okamoto A, Nakamura R, Hashimoto K (2011) In-vivo identification of direct electron transfer from / Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA-MtrCAB protein complexes. Electrochim Acta 56:5526-531 CrossRef
    213. Baron D, LaBelle E, Coursolle D, Gralnick JA, Bond DR (2009) Electrochemical measurement of electron transfer kinetics by / Shewanella oneidensis MR-1. J Biol Chem 284:28865-8873 CrossRef
    214. Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in / Shewanella oneidensis. J Bacteriol 192:467-74 CrossRef
    215. Marritt SJ, Lowe TG, Bye J, McMillan DGG, Shi L, Fredrickson J, Zachara J, Richardson DJ, Cheesman MR, Jeuken LJC, Butt JN (2012) A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in / Shewanella. Biochem J 444:465-74 CrossRef
    216. Coursolle D, Gralnick JA (2010) Modularity of the Mtr respiratory pathway of / Shewanella oneidensis strain MR-1. Mol Microbiol 77:995-008
    217. Shi L, Chen B, Wang Z, Elias DA, Mayer MU, Gorby YA, Ni S, Lower BH, Kennedy DW, Wunschel DS, Mottaz HM, Marshall MJ, Hill EA, Beliaev AS, Zachara JM, Fredrickson JK, Squier T (2006) Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of / Shewanella oneidensis MR-1. J Bacteriol 188:4705-714 CrossRef
    218. Carmona-Martinez AA, Harnisch F, Fitzgerald LA, Biffinger JC, Ringeisen BR, Schr?der U (2011) Cyclic voltammetric analysis of the electron transfer of / Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants. Bioelectrochemistry 81:74-0 CrossRef
    219. Nakamura R, Kai F, Okamoto A, Newton GJ, Hashimoto K (2009) Self-constructed electrically conductive bacterial networks. Angew Chem Int Edit 48:508-11 CrossRef
    220. Jain A, Zhang X, Pastorella G, Connolly JO, Barry N, Woolley R, Krishnamurthy S, Marsili E (2012) Electron transfer mechanism in / Shewanella loihica PV-4 biofilms formed at graphite electrode. Bioelectrochemistry 87:28-2 CrossRef
    221. Newton GJ, Mori S, Nakamura R, Hashimoto K, Watanabe K (2009) Analyses of current-generation mechanisms of / Shewanella loihica PV-4 in microbial fuel cells in comparison with / Shewanella oneidensis MR-1. Appl Environ Microbiol 75:7674-681 CrossRef
    222. Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim B-C, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nano 6:573-79 CrossRef
    223. Malvankar NS, Lau J, Nevin KP, Franks AE, Tuominen MT, Lovley DR (2012) Electrical conductivity in a mixed-species biofilm. Appl Environ Microbiol. doi:10.1128/AEM.01803-12
    224. Strycharz-Glaven SM, Snider RM, Guiseppi-Elie A, Tender LM (2011) On the electrical conductivity of microbial nanowires and biofilms. Energ Environ Sci 4:4366-379 CrossRef
    225. Magnuson TS (2011) How the xap locus put electrical “Zap-in / Geobacter sulfurreducens biofilms. J Bacteriol 193(5):1021-022 CrossRef
    226. Cao B, Shi L, Brown RN, Xiong Y, Fredrickson JK, Romine MF, Marshall MJ, Lipton MS, Beyenal H (2011) Extracellular polymeric substances from / Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol 13:1018-031 CrossRef
    227. Leang C, Qian X, Mester TN, Lovley DR (2010) Alignment of the c-type cytochrome OmcS along pili of / Geobacter sulfurreducens. Appl Environ Microbiol 76:4080-084 CrossRef
    228. Lovley DR (2012) Electromicrobiology. Annu Rev Microbiol 66:391-09 CrossRef
    229. Malvankar NS, Tuominen MT, Lovley DR (2012) Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of / Geobacter sulfurreducens. Energ Environ Sci 5:8651-659 CrossRef
    230. Veazey JP, Reguera G, Tessmer SH (2011) Electronic properties of conductive pili of the metal-reducing bacterium / Geobacter sulfurreducens probed by scanning tunneling microscopy. Phys Rev E 84:060901 CrossRef
    231. Bond DR, Strycharz-Glaven SM, Tender LM, Torres CI (2012) On electron transport through / Geobacter biofilms. ChemSusChem 5:1099-105 CrossRef
    232. Schrott GD, Bonanni PS, Robuschi L, Esteve-Nú?ez A, Busalmen JP (2011) Electrochemical insight into the mechanism of electron transport in biofilms of / Geobacter sulfurreducens. Electrochim Acta 56:10791-0795 CrossRef
    233. Rollefson JB, Stephen CS, Tien M, Bond DR (2011) Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in / Geobacter sulfurreducens. J Bacteriol 193:1023-033 CrossRef
    234. Malvankar NS, Tuominen MT, Lovley DR (2012) Comment on “On electrical conductivity of microbial nanowires and biofilms-by Strycharz-Glaven SM, Snider RM, Guiseppi-Elie A, Tender LM (2011) Energ Environ Sci 4:4366". Energ Environ Sci 5:6247-249 CrossRef
    235. Strycharz-Glaven SM, Tender LM (2012) Reply to the ‘Comment on “On electrical conductivity of microbial nanowires and biofilms-by Malvankar NS, Tuominen MT, Lovley DR (2012) Energ Environ Sci 5:6247-249- Energ Environ Sci 5:6250-255 CrossRef
    236. Polizzi NF, Skourtis SS, Beratan DN (2012) Physical constraints on charge transport through bacterial nanowires. Faraday Discuss 155:43-1 CrossRef
    237. Fitzgerald LA, Petersen ER, Ray RI, Little BJ, Cooper CJ, Howard EC, Ringeisen BR, Biffinger JC (2012) / Shewanella oneidensis MR-1 Msh pilin proteins are involved in extracellular electron transfer in microbial fuel cells. Process Biochem 47:170-74 CrossRef
    238. Kouzuma A, Meng X-Y, Kimura N, Hashimoto K, Watanabe K (2010) Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in / Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl Environ Microbiol 76:4151-157 CrossRef
    239. Jiang X, Hu J, Fitzgerald LA, Biffinger JC, Xie P, Ringeisen BR, Lieber CM (2010) Probing electron transfer mechanisms in / Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc Natl Acad Sci USA 107:16806-6810 CrossRef
    240. Biffinger JC, Fitzgerald LA, Ray R, Little BJ, Lizewski SE, Petersen ER, Ringeisen BR, Sanders WC, Sheehan PE, Pietron JJ, Baldwin JW, Nadeau LJ, Johnson GR, Ribbens M, Finkel SE, Nealson KH (2011) The utility of / Shewanella japonica for microbial fuel cells. Bioresource Technol 102:290-97 CrossRef
    241. Yang Y, Sun G, Guo J, Xu M (2011) Differential biofilms characteristics of / Shewanella decolorationis microbial fuel cells under open and closed circuit conditions. Bioresource Technol 102:7093-098 CrossRef
    242. Li S-L, Freguia S, Liu S-M, Cheng S-S, Tsujimura S, Shirai O, Kano K (2010) Effects of oxygen on / Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes. Biosens Bioelectron 25:2651-656 CrossRef
    243. Borole AP, Reguera G, Ringeisen B, Wang Z-W, Feng Y, Kim BH (2011) Electroactive biofilms: current status and future research needs. Energ Environ Sci 4:4813-834 CrossRef
    244. Holmes DE, Bond DR, Lovley DR (2004) Electron transfer by / Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol 70:1234-237 CrossRef
    245. Marshall CW, May HD (2009) Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, / Thermincola ferriacetica. Energ Environ Sci 2:699-05 CrossRef
    246. Zhuang L, Zhou S, Yuan Y, Liu T, Wu Z, Cheng J (2011) Development of / Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm. Bioresource Technol 102:284-89 CrossRef
    247. Wrighton KC, Thrash JC, Melnyk RA, Bigi JP, Byrne-Bailey KG, Remis JP, Schichnes D, Auer M, Chang CJ, Coates JD (2011) Evidence for direct electron transfer by a Gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 77:7633-639 CrossRef
    248. Carlson HK, Iavarone AT, Gorur A, Yeo BS, Tran R, Melnyk RA, Mathies RA, Auer M, Coates JD (2012) Surface multiheme c-type cytochromes from / Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc Natl Acad Sci USA 109:1702-707 CrossRef
    249. Masuda M, Freguia S, Wang Y-F, Tsujimura S, Kano K (2010) Flavins contained in yeast extract are exploited for anodic electron transfer by / Lactococcus lactis. Bioelectrochemistry 78:173-75 CrossRef
    250. Velasquez-Orta S, Head I, Curtis T, Scott K, Lloyd J, von Canstein H (2010) The effect of flavin electron shuttles in microbial fuel cells current production. Appl Microbiol Biot 85:1373-381 CrossRef
    251. Zhang T, Zhang L, Su W, Gao P, Li D, He X, Zhang Y (2011) The direct electrocatalysis of phenazine-1-carboxylic acid excreted by / Pseudomonas alcaliphila under alkaline condition in microbial fuel cells. Bioresource Technol 102(14):7099-102 CrossRef
    252. Freguia S, Masuda M, Tsujimura S, Kano K (2009) / Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry 76:14-8 CrossRef
    253. Qiao Y, Li CM, Bao SJ, Lu ZS, Hong YH (2008) Direct electrochemistry and electrocatalytic mechanism of evolved / Escherichia coli cells in microbial fuel cells. Chem Commun 11:1290-292 CrossRef
    254. Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by / Geothrix fermentans. Appl Environ Microbiol 71:2186-189 CrossRef
    255. Venkataraman A, Rosenbaum MA, Perkins SD, Werner JJ, Angenent LT (2011) Metabolite-based mutualism between / Pseudomonas aeruginosa PA14 and / Enterobacter aerogenes enhances current generation in bioelectrochemical systems. Energ Environ Sci 4:4550-559 CrossRef
    256. Kim N, Choi Y, Jung S, Kim S (2000) Development of microbial fuel cells using / Proteus vulgaris. B Korean Chem Soc 21:44-8
    257. Thurston CF, Bennetto HP, Delaney GM, Mason JR, Roller SD, Stirling JL (1985) Glucose metabolism in a microbial fuel cell: stoichiometry of product formation in a thionine-mediated / Proteus vulgaris fuel cell and its relation to coulombic yields. J Gen Microbiol 131:1393-401
    258. Wen Q, Kong F, Ma F, Ren Y, Pan Z (2011) Improved performance of air-cathode microbial fuel cell through additional Tween 80. J Power Sources 196:899-04 CrossRef
    259. Ho PI, Kumar GG, Kim AR, Kim P, Nahm KS (2011) Microbial electricity generation of diversified carbonaceous electrodes under variable mediators. Bioelectrochemistry 80:99-04 CrossRef
    260. Wen Q, Kong F, Ren Y, Cao D, Wang G, Zheng H (2010) Improved performance of microbial fuel cell through addition of rhamnolipid. Electrochem Commun 12:1710-713 CrossRef
    261. Schr?der U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619-629 CrossRef
    262. Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2011) Electrochemical sensors and biosensors. Anal Chem 84:685-07 CrossRef
    263. Eltzov E, Marks R (2011) Whole-cell aquatic biosensors. Anal Bioanal Chem 400:895-13 CrossRef
    264. Xu F, Duan J, Hou B (2010) Electron transfer process from marine biofilms to graphite electrodes in seawater. Bioelectrochemistry 78:92-5 CrossRef
    265. Qiao Y, Bao S-J, Li CM (2010) Electrocatalysis in microbial fuel cells-from electrode material to direct electrochemistry. Energ Environ Sci 3(5):544-53 CrossRef
    266. Hasan K, Patil SA, Górecki K, Leech D, H?gerh?ll C, Gorton L (2012) Electrochemical communication between heterotrophically grown / Rhodobacter capsulatus with electrodes mediated by an osmium redox polymer. Bioelectrochemistry. doi:10.1016/j.bioelechem.2012.1005.1004
    267. Rawson FJ, Garrett DJ, Leech D, Downard AJ, Baronian KHR (2011) Electron transfer from / Proteus vulgaris to a covalently assembled, single walled carbon nanotube electrode functionalised with osmium bipyridine complex: application to a whole cell biosensor. Biosens Bioelectron 26:2383-389 CrossRef
    268. Hasan K, Patil SA, Leech D, H?gerh?ll C, Gorton L (2012) Electrochemical communication between microbial cells and electrodes via osmium redox systems. Biochem Soc T 40(6):1330-335
    269. Niessen J, Schr?der U, Harnisch F, Scholz F (2005) Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett Appl Microbiol 41:286-90 CrossRef
    270. Niessen J, Schr?der U, Scholz F (2004) Exploiting complex carbohydrates for microbial electricity generation: a bacterial fuel cell operating on starch. Electrochem Commun 6:955-58 CrossRef
    271. Karube I, Matsunaga T, Tsuru S, Suzuki S (1977) Biochemical fuel cell utilizing immobilized cells of / Clostridium butyricum. Biotechnol Bioeng 19:1727-733 CrossRef
    272. Velasquez-Orta SB, Head IM, Curtis TP, Scott K (2011) Factors affecting current production in microbial fuel cells using different industrial wastewaters. Bioresource Technol 102:5105-112 CrossRef
    273. Ren Z, Yan H, Wang W, Mench MM, Regan JM (2011) Characterization of microbial fuel cells at microbially and electrochemically meaningful time scales. Environ Sci Technol 45:2435-441 CrossRef
    274. Harnisch F, Koch C, Patil SA, Hübschmann T, Müller S, Schr?der U (2011) Revealing the electrochemically driven selection in natural community derived microbial biofilms using flow-cytometry. Energ Environ Sci 4:1265-267 CrossRef
    275. Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483-85 CrossRef
    276. Patil SA, Hasan K, Leech D, H?gerh?ll C, Gorton L (2012) Improved microbial electrocatalysis with osmium polymer modified electrodes. Chem Commun 48:10183-0185 CrossRef
    277. Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943-947 CrossRef
    278. Strycharz SM, Glaven RH, Coppi MV, Gannon SM, Perpetua LA, Liu A, Nevin KP, Lovley DR (2011) Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to / Geobacter sulfurreducens. Bioelectrochemistry 80:142-50 CrossRef
    279. Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, L?ffler FE, Lovley DR (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by / Geobacter lovleyi. Appl Environ Microbiol 74:5943-947 CrossRef
    280. Strik DPBTB, Hamelers HVM, Buisman CJN (2009) Solar energy powered microbial fuel cell with a reversible bioelectrode. Environ Sci Technol 44:532-37 CrossRef
    281. Parot S, Vandecandelaere I, Cournet A, Délia M-L, Vandamme P, Bergé M, Roques C, Bergel A (2011) Catalysis of the electrochemical reduction of oxygen by bacteria isolated from electro-active biofilms formed in seawater. Bioresource Technol 102:304-11 CrossRef
    282. You SJ, Ren NQ, Zhao QL, Wang JY, Yang FL (2009) Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fibre brush as cathode material. Fuel Cells 9:588-96 CrossRef
    283. Vandecandelaere I, Nercessian O, Faimali M, Segaert E, Mollica A, Achouak W, De Vos P, Vandamme P (2010) Bacterial diversity of the cultivable fraction of a marine electroactive biofilm. Bioelectrochemistry 78:62-6 CrossRef
    284. Freguia S, Tsujimura S, Kano K (2010) Electron transfer pathways in microbial oxygen biocathodes. Electrochim Acta 55:813-18 CrossRef
    285. Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41:2554-559 CrossRef
    286. Park DH, Zeikus JG (1999) Utilization of electrically reduced neutral red by / Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:2403-410
    287. Emde R, Schink B (1990) Enhanced propionate formation by / Propionibacterium freudenreichii subsp. / freudenreichii in a three-electrode amperometric culture system. Appl Environ Microbiol 56:2771-776
    288. Shin HS, Jain MJ, Chartrain MC, Zeikus JZ (2001) Evaluation of an electrochemical bioreactor system in the biotransformation of 6-bromo-2-tetralone to 6-bromo-2-tetralol. Appl Microbiol Biot 57(4):506-10 CrossRef
    289. Hongo M, Iwahara M (1979) Determination of electro-energizing conditions for l -glutamic acid fermentation. Agric Biol Chem 43:2083-086 CrossRef
    290. Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN (2009) Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol 44:513-17 CrossRef
    291. Aulenta F, Canosa A, Majone M, Panero S, Reale P, Rossetti S (2008) Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system. Environ Sci Technol 42:6185-190 CrossRef
    292. Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:1740-746 CrossRef
    293. Lojou E, Durand MC, Dolla A, Bianco P (2002) Hydrogenase activity control at / Desulfovibrio vulgaris cell-coated carbon electrodes: biochemical and chemical factors influencing the mediated bioelectrocatalysis. Electroanal 14:913-22 CrossRef
    294. Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone M (2010) Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosens Bioelectron 25:1796-802 CrossRef
    295. Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M (2009) Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol Bioeng 103:85-1 CrossRef
    296. Sakakibara Y, Kuroda M (1993) Electric prompting and control of denitrification. Biotechnol Bioeng 42:535-37 CrossRef
    297. Park HI, Dk K, Choi Y-J, Pak D (2005) Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor. Process Biochem 40:3383-388 CrossRef
    298. Feleke Z, Araki K, Sakakibara Y, Watanabe T, Kuroda M (1998) Selective reduction of nitrate to nitrogen gas in a biofilm-electrode reactor. Water Res 32:2728-734 CrossRef
    299. Cast KL, Flora JRV (1998) An evaluation of two cathode materials and the impact of copper on bioelectrochemical denitrification. Water Res 32:63-0 CrossRef
    300. Rabaey K, Girguis P, Nielsen LK (2011) Metabolic and practical considerations on microbial electrosynthesis. Curr Opin Biotech 22:371-77 CrossRef
    301. Zhao F, Slade RCT, Varcoe JR (2009) Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chem Soc Rev 38(7):1926-939 CrossRef
    302. He Z, Mansfeld F (2009) Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energ Environ Sci 2:215-19 CrossRef
    303. Watson VJ, Logan BE (2011) Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochem Commun 13:54-6 CrossRef
    304. Manohar AK, Bretschger O, Nealson KH, Mansfeld F (2008) The polarization behavior of the anode in a microbial fuel cell. Electrochim Acta 53:3508-513 CrossRef
    305. Patil SA, Harnisch F, Koch C, Hübschmann T, Fetzer I, Carmona-Martinez AA, Müller S, Schr?der U (2011) Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. Bioresource Technol 102:9683-690 CrossRef
    306. Chen S, Hou H, Harnisch F, Patil SA, Carmona-Martinez AA, Agarwal S, Zhang Y, Sinha-Ray S, Yarin AL, Greiner A, Schr?der U (2011) Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells. Energ Environ Sci 4:1417-421 CrossRef
    307. Patil SA, Harnisch F, Kapadnis B, Schr?der U (2010) Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. Biosens Bioelectron 26:803-08 CrossRef
    308. Liu Y, Harnisch F, Fricke K, Sietmann R, Schr?der U (2008) Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosens Bioelectron 24:1006-011 CrossRef
    309. Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE (2009) Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol 43:9519-524 CrossRef
    310. Pocaznoi D, Erable B, Delia M-L, Bergel A (2012) Ultra microelectrodes increase the current density provided by electroactive biofilms by improving their electron transport ability. Energ Environ Sci 5:5287-296 CrossRef
    311. Parot S, Délia M-L, Bergel A (2008) Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresource Technol 99:4809-816 CrossRef
    312. Wei J, Liang P, Cao X, Huang X (2010) A new insight into potential regulation on growth and power generation of / Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Environ Sci Technol 44:3187-191 CrossRef
    313. Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008) The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biot 78:409-18 CrossRef
    314. Finkelstein DA, Tender LM, Zeikus JG (2006) Effect of electrode potential on electrode-reducing microbiota. Environ Sci Technol 40:6990-995 CrossRef
    315. Cheng KY, Ho G, Cord-Ruwisch R (2008) Affinity of microbial fuel cell biofilm for the anodic potential. Environ Sci Technol 42:3828-834 CrossRef
    316. Wagner RC, Call DF, Logan BE (2010) Optimal set anode potentials vary in bioelectrochemical systems. Environ Sci Technol 44:6036-041 CrossRef
    317. Pocaznoi D, Erable B, Etcheverry L, Delia M-L, Bergel A (2012) Forming microbial anodes under delayed polarisation modifies the electron transfer network and decreases the polarisation time required. Bioresource Technol 114:334-41 CrossRef
    318. Harnisch F, Freguia S (2012) A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms. Chem Asian J 7:466-75 CrossRef
    319. Torres CI, Marcus AK, Lee H-S, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3-7 CrossRef
    320. Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to / Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297-06 CrossRef
    321. Zhang T, Cui C, Chen S, Ai X, Yang H, Shen P, Peng Z (2006) A novel mediatorless microbial fuel cell based on direct biocatalysis of / Escherichia coli. Chem Commun 21:2257-259 CrossRef
    322. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, / Shewanella putrefaciens. Enzyme Microb Tech 30:145-52 CrossRef
    323. Rabaey K, Ossieur W, Verhaege M, Verstraete W (2005) Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci Technol 52:515-23
    324. Yoon SM, Choi CH, Kim M, Hyun MS, Shin SH, Yi D, Kim HJ (2007) Enrichment of electrochemically active bacteria using a three-electrode electrochemical cell. J Microbiol Biotechnol 17:110-15
    325. He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39:5262-267 CrossRef
    326. Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to / Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129-34 CrossRef
    327. Liu H, Cheng S, Logan BE (2004) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658-62 CrossRef
    328. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373-382 CrossRef
    329. Katuri KP, Kavanagh P, Rengaraj S, Leech D (2010) / Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: insights using cyclic voltammetry. Chem Commun 46:4758-760 CrossRef
    330. Jain A, Gazzola G, Panzera A, Zanoni M, Marsili E (2011) Visible spectroelectrochemical characterization of / Geobacter sulfurreducens biofilms on optically transparent indium tin oxide electrode. Electrochim Acta 56:10776-0785 CrossRef
    331. Liu H, Newton GJ, Nakamura R, Hashimoto K, Nakanishi S (2010) Electrochemical characterization of a single electricity-producing bacterial cell of / Shewanella by using optical tweezers. Angew Chem Int Edit 49:6596-599 CrossRef
    332. Okamoto A, Nakamura R, Ishii K, Hashimoto K (2009) In vivo electrochemistry of C-type cytochrome-mediated electron-transfer with chemical marking. Chembiochem 10:2329-332 CrossRef
    333. Katuri KP, Rengaraj S, Kavanagh P, O’Flaherty V, Leech D (2012) Charge transport through / Geobacter sulfurreducens biofilms grown on graphite rods. Langmuir 28:7904-913 CrossRef
    334. Wu X, Zhao F, Rahunen N, Varcoe JR, Avignone-Rossa C, Thumser AE, Slade RCT (2011) A role for microbial palladium nanoparticles in extracellular electron transfer. Angew Chem Int Edit 50:427-30 CrossRef
    335. Millo D, Harnisch F, Patil SA, Ly HK, Schr?der U, Hildebrandt P (2011) In situ spectroelectrochemical investigation of electrocatalytic microbial biofilms by surface-enhanced resonance Raman spectroscopy. Angew Chem Int Edit 50:2625-627 CrossRef
    336. Liu Y, Kim H, Franklin RR, Bond DR (2011) Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living / Geobacter sulfurreducens biofilms. Chemphyschem 12:2235-241 CrossRef
    337. Busalmen JP, Berná A, Feliu JM (2007) Spectroelectrochemical examination of the interaction between bacterial cells and gold electrodes. Langmuir 23:6459-466 CrossRef
    338. Nakamura R, Ishii K, Hashimoto K (2009) Electronic absorption spectra and redox properties of c?type cytochromes in living microbes. Angew Chem Int Edit 48:1606-608 CrossRef
    339. Liu Y, Bond DR (2012) Long-distance electron transfer by / G. sulfurreducens biofilms results in accumulation of reduced c-type cytochromes. ChemSusChem 5:1047-053 CrossRef
    340. Biju V, Pan D, Gorby YA, Fredrickson J, McLean J, Saffarini D, Lu HP (2006) Combined spectroscopic and topographic characterization of nanoscale domains and their distributions of a redox protein on bacterial cell surfaces. Langmuir 23:1333-338 CrossRef
    341. Compton RG, Perkin SJ, Gamblin DP, Davis J, Marken F, Padden AN, John P (2000) / Clostridium isatidis colonised carbon electrodes: voltammetric evidence for direct solid state redox processes. New J Chem 24:179-81 CrossRef
    342. Parot S, Nercessian O, Délia ML, Achouak W, Bergel A (2009) Electrochemical checking of aerobic isolates from electrochemically active biofilms formed in compost. J Appl Microbiol 106:1350-359 CrossRef
    343. Dominguez-Benetton X, Sevda S, Vanbroekhoven K, Pant D (2012) The accurate use of impedance analysis for the study of microbial electrochemical systems. Chem Soc Rev 41:7228-246 CrossRef
    344. Strik DP, Ter Heijne A, Hamelers HVM, Saakes M, Buisman C (2008) Feasibility study on electrochemical impedance spectroscopy for microbial fuel cells: measurement modes & data validation. ECS Trans 13:27-1 CrossRef
    345. He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40:5212-217 CrossRef
    346. Ouitrakul S, Sriyudthsak M, Charojrochkul S, Kakizono T (2007) Impedance analysis of bio-fuel cell electrodes. Biosens Bioelectron 23:721-27 CrossRef
    347. Ramasamy RP, Ren Z, Mench MM, Regan JM (2008) Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnol Bioeng 101:101-08 CrossRef
    348. Borole AP, Aaron D, Hamilton CY, Tsouris C (2010) Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy. Environ Sci Technol 44:2740-745 CrossRef
    349. Aaron D, Tsouris C, Hamilton CY, Borole AP (2010) Assessment of the effects of flow rate and ionic strength on the performance of an air-cathode microbial fuel cell using electrochemical impedance spectroscopy. Energies 3:592-06 CrossRef
    350. He Z, Huang Y, Manohar AK, Mansfeld F (2008) Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 74:78-2 CrossRef
    351. ter Heijne A, Schaetzle O, Gimenez S, Fabregat-Santiago F, Bisquert J, Strik DPBTB, Barriere F, Buisman CJN, Hamelers HVM (2011) Identifying charge and mass transfer resistances of an oxygen reducing biocathode. Energ Environ Sci 4:5035-043 CrossRef
    352. Virdis B, Harnisch F, Batstone DJ, Rabaey K, Donose BC (2012) Non-invasive characterization of electrochemically active microbial biofilms using confocal Raman microscopy. Energ Environ Sci 5:7017-024 CrossRef
    353. Firer-Sherwood MA, Bewley KD, Mock J-Y, Elliott SJ (2011) Tools for resolving complexity in the electron transfer networks of multiheme cytochromes c. Metallomics 3:344-48 CrossRef
    354. Franks AE, Glaven RH, Lovley DR (2012) Real-time spatial gene expression analysis within current-producing biofilms. ChemSusChem 5:1092-098 CrossRef
    355. Harnisch F, Rabaey K (2012) The diversity of techniques to study electrochemically active biofilms highlights the need for standardization. ChemSusChem 5:1027-038 CrossRef
    356. Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, Bradley J, Reardon CL, Shi L, Beliaev AS, Marshall MJ, Wang Z, Watmough NJ, Fredrickson JK, Zachara JM, Butt JN, Richardson DJ (2011) Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci USA 108:9384-389 CrossRef
    357. Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413-415 CrossRef
    358. Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. mBio 2(4):e00159-1 CrossRef
    359. Rotaru A-E, Shrestha PM, Liu F, Ueki T, Nevin K, Summers ZM, Lovley DR (2012) Interspecies electron transfer via H2 and formate rather than direct electrical connections in co-cultures of / Pelobacter carbinolicus and / Geobacter sulfurreducens. Appl Environ Microbiol 78(21):7645-651
    360. Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, Kjeldsen KU, Schreiber L, Gorby YA, El-Naggar MY, Leung KM, Schramm A, Risgaard-Petersen N, Nielsen LP (2012) Filamentous bacteria transport electrons over centimetre distances. Nature 491:218-21
  • 作者单位:Sunil A. Patil (1)
    Cecilia H?gerh?ll (1)
    Lo Gorton (1)

    1. Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, P.O. Box 124, 22100, Lund, Sweden
  • ISSN:1867-2094
文摘
Microbes have been shown to naturally form veritable electric grids in which different species acting as electron donors and others acting as electron acceptors cooperate. The uptake of electrons from cells adjacent to them is a mechanism used by microorganisms to gain energy for cell growth and maintenance. The external discharge of electrons in lieu of a terminal electron acceptor, and the reduction of external substrates to uphold certain metabolic processes, also plays a significant role in a variety of microbial environments. These vital microbial respiration events, viz. extracellular electron transfer to and from microorganisms, have attracted widespread attention in recent decades and have led to the development of fascinating research concerning microbial electrochemical sensors and bioelectrochemical systems for environmental and bioproduction applications involving different fuels and chemicals. In such systems, microorganisms use mainly either (1) indirect routes involving use of small redox-active organic molecules referred to as redox mediators, secreted by cells or added exogenously, (2) primary metabolites or other intermediates, or (3) direct modes involving physical contact in which naturally occurring outer-membrane c-type cytochromes shuttle electrons for the reduction or oxidation of electrodes. Electron transfer mechanisms play a role in maximizing the performance of microbe–electrode interaction-based systems and help very much in providing an understanding of how such systems operate. This review summarizes the mechanisms of electron transfer between bacteria and electrodes, at both the anode and the cathode, in bioelectrochemical systems. The use over the years of various electrochemical approaches and techniques, cyclic voltammetry in particular, for obtaining a better understanding of the microbial electrocatalysis and the electron transfer mechanisms involved is also described and exemplified.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700