What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications?
详细信息    查看全文
  • 作者:Frank Flechtner ; Karl-Hans Neumayer ; Christoph Dahle…
  • 关键词:GRACE ; GRACE ; FO ; Time ; variable gravity modeling ; Satellite ; to ; satellite tracking
  • 刊名:Surveys in Geophysics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:37
  • 期:2
  • 页码:453-470
  • 全文大小:20,017 KB
  • 参考文献:Bandikova T, Flury J (2014) Improvement of the GRACE star camera data based on the revision of the combination method. Adv Space Res 54:1818–1827. doi:10.​1016/​j.​asr.​2014.​07.​004 CrossRef
    Bandikova T, Meyer U, Klinger B, Tregoning P, Flury J, Mayer-Gürr T (2014) Improved star camera attitude data and their effect on the gravity field. In: Proceedings of the GRACE science team meeting. http://​www.​gfz-potsdam.​de/​en/​section/​globalgeomonitor​ingandgravityfie​ld/​topics/​development-operation-and-analysis-of-gravity-field-satellite-missions/​grace/​gstm/​gstm-2014/​meeting-program-and-abstract-list/​ . Last time visited August 4, 2015, German Research Centre for Geosciences, Potsdam, Germany, September 29–October 1, 2014
    Bergmann I, Dobslaw H (2012) Short-term transport variability of the Antarctic Circumpolar Current from satellite gravity observations. J Geophys Res (Oceans) 117(C16):5044. doi:10.​1029/​2012JC007872
    Cazenave A, Dominh K, Guinehut S, Berthier E, Llovel W, Ramillien G, Ablain M, Larnicol G (2009) Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet Change 65:83–88CrossRef
    Dahle C, Flechtner F, König R, Michalak G, Neumayer KH, Gruber C, König D (2014) GFZ RL05: an improved time-series of monthly GRACE gravity field solutions. In: Flechtner F, Sneeuw N, Schuh W-D (eds) Observation of the system earth from space—CHAMP, GRACE, GOCE and future missions (GEOTECHNOLOGIEN science report; 20; advanced technologies in earth sciences). Springer, Berlin, pp 29–39. doi:10.​1007/​978-3-642-32135-1
    Dobslaw H, Bergmann I, Dill R, Forootan E, Klemann V, Kusche J, Sasgen I (2015a) The updated ESA Earth system model for future gravity mission simulation studies. J Geodesy. doi:10.​1007/​s00190-014-0787-8
    Dobslaw H, Bergmann-Wolf I, Forootan E, Dahle C, Mayer-Gürr T, Kusche J, Flechtner F (2015b) Modeling of present-day atmosphere and ocean non-tidal de-aliasing errors for future gravity mission simulations. J Geod (submitted)
    Elsaka B, Raimondo JC, Brieden P, Reubelt T, Kusche J, Flechtner F, Iran Pour S, Sneeuw N, Müller J (2014) Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation. J Geodesy 88:31–43. doi:10.​1007/​s00190-013-0665-9 CrossRef
    Flechtner F, Dobslaw H, Fagiolini E (2014) AOD1B product description document for product release 05 (Rev. 4.2, May 20, 2014). http://​www.​gfz-potsdam.​de/​en/​aod1b
    Flechtner F, Morton P, Watkins M, Webb F (2015) Status of the GRACE follow-on mission. In: Proceedings of the international association of geodesy symposia gravity, geoid and height system (2012, Venice, Italy), IAGS-D-12-00141
    Flury J, Bettadpur S, Tapley BD (2008) Precise accelerometry onboard the GRACE gravity field satellite mission. Adv Space Res 42:1414–1423. doi:10.​1016/​j.​asr.​2008.​05.​004 CrossRef
    Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine J, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGENGL04C. J Geodesy 82:331–346CrossRef
    Gruber Th, Bamber JL, Bierkens MFP, Dobslaw H, Murböck M, Thomas M, van Beek LPH, van Dam T, Vermeersen LLA, Visser PNAM (2011) Simulation of the time-variable gravity field by means of coupled geophysical models. Earth Syst Sci Data 3(1):19–35. doi:10.​5194/​essd-3-19-2011 CrossRef
    Hedin AE (1987) MSIS86 thermospheric model. J Geophys Res. doi:10.​1029/​JA092iA05p04649
    Knocke P, Ries J, Tapley B (1988) Earth radiation pressure effects on satellites. In: Proceedings of the AIAA/AAS astrodynamics specialist conference 1988, Washington DC, USA, pp 577–586. doi:10.​2514/​6.​1988-4292
    Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geodesy 81:733–749. doi:10.​1007/​s00190-007-0143-3 CrossRef
    Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA/TP-1998-206861, 1998
    Loomis BD, Nerem RS, Luthcke SB (2012) Simulation study of a follow-on gravity mission to GRACE. J Geodesy 86:319–335. doi:10.​1007/​s00190-011-0521-8 CrossRef
    Ray R (2008) GOT4.7 (private communication). Extension of Ray R (1999) A global ocean tide model from Topex/Poseidon altimetry GOT99.2. NASA technical memo 209478, Sept 1999
    Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2005) An earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn 39:1–10CrossRef
    Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi:10.​1038/​nature08238 CrossRef
    Sasgen I, Dobslaw H, Martinec Z, Thomas M (2010) Satellite gravimetry observation of Antarctic snow accumulation related to ENSO. Earth Planet Sci Lett 299:352–358. doi:10.​1016/​j.​epsl.​2010.​09.​015 CrossRef
    Savcenko R, Bosch W (2008) EOT08a—empirical ocean tide model from multi-mission satellite altimetry, report no. 81. Deutsches Geodätisches Forschungsinstitut (DGFI), München
    Scanlon BR, Longuevergne L, Long D (2012) Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour Res 48:4520. doi:10.​1029/​2011WR011312
    Shako R, Förste C, Abrikosov O, Bruinsma SL, Marty JC, Lemoine JM, Flechtner F, Neumayer KH, Dahle C (2014) EIGEN-6C: a high-resolution global gravity combination model including GOCE data. In: Flechtner F et al (eds) Observation of the system earth from space—CHAMP, GRACE, GOCE and future missions, advanced technologies in earth sciences. Springer, Berlin. doi:10.​1007/​978-3-642-32135-1_​20
    Sheard B, Heinzel G, Danzmann K, Shaddock D, Klipstein B, Folkner W (2012) Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geodesy. doi:10.​1007/​s00190-012-0566-3
    Standish E (1998) JPL planetary and lunar ephemerides “DE405/LE405”. Interoffice memorandum IOM 312.F-98-048, JPL, Los Angeles, USA, 26 Aug 1998
    Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.​1029/​2005GL025285
    Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.​1029/​2004GL019920 CrossRef
    Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229. doi:10.​1029/​98JB02844 CrossRef
    Wang L, Shum CK, Simons FJ, Tapley B, Dai C (2012) Coseismic and postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by GRACE gravimetry. Geophys Res Lett 39:7301. doi:10.​1029/​2012GL051104
    Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng C, Healy S (2009) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terr Atmos Ocean Sci 20:35–50CrossRef
    Wouters B, Bonin JA, Chambers DP, Riva REM, Sasgen I, Wahr J (2014) GRACE, time-varying gravity, Earth system dynamics and climate change. Rep Prog Phys. doi:10.​1088/​0034-4885/​77/​11/​116801
  • 作者单位:Frank Flechtner (1)
    Karl-Hans Neumayer (1)
    Christoph Dahle (1)
    Henryk Dobslaw (1)
    Elisa Fagiolini (1)
    Jean-Claude Raimondo (2)
    Andreas Güntner (3)

    1. Department 1 “Geodesy and Remote Sensing”, GFZ German Research Center for Geosciences, Telegrafenberg, 14473, Potsdam, Germany
    2. SpaceTech GmbH, Seelbachstr. 13, 88090, Immenstaad, Germany
    3. Department 5 “Earth Surface Processes”, GFZ German Research Center for Geosciences, Telegrafenberg, 14473, Potsdam, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Geosciences
    Astronomy
  • 出版者:Springer Netherlands
  • ISSN:1573-0956
文摘
The primary objective of the gravity recovery and climate experiment follow-on (GRACE-FO) satellite mission, due for launch in August 2017, is to continue the GRACE time series of global monthly gravity field models. For this, evolved versions of the GRACE microwave instrument, GPS receiver, and accelerometer will be used. A secondary objective is to demonstrate the effectiveness of a laser ranging interferometer (LRI) in improving the satellite-to-satellite tracking measurement performance. In order to investigate the expected enhancement for Earth science applications, we have performed a full-scale simulation over the nominal mission lifetime of 5 years using a realistic orbit scenario and error assumptions both for instrument and background model errors. Unfiltered differences between the synthetic input and the finally recovered time-variable monthly gravity models show notable improvements with the LRI, on a global scale, of the order of 23 %. The gain is realized for wavelengths smaller than 240 km in case of Gaussian filtering but decreases to just a few percent when anisotropic filtering is applied. This is also confirmed for some typical regional Earth science applications which show randomly distributed patterns of small improvements but also degradations when using DDK4-filtered LRI-based models. Analysis of applied error models indicates that accelerometer noise followed by ocean tide and non-tidal mass variation errors are the main contributors to the overall GRACE-FO gravity model error. Improvements in these fields are therefore necessary, besides optimized constellations, to make use of the increased LRI accuracy and to significantly improve gravity field models from next-generation gravity missions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700