Using ground gravity to improve ice mass change estimation from GOCE gravity gradients in mid-west Greenland
详细信息    查看全文
  • 作者:Carl Christian Tscherning ; Matija Herceg
  • 关键词:GOCE gradients ; ice ; mass ; Least ; Squares Collocation ; Reduced Point Mass
  • 刊名:Studia Geophysica et Geodaetica
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:60
  • 期:1
  • 页码:56-68
  • 全文大小:1,156 KB
  • 参考文献:Barletta V.R., Sørensen L.S. and Forsberg R., 2013. Scatter of mass changes estimates at basin scale for Greenland and Antarctica. The Cryosphere, 7, 1411–1432, DOI: 10.5194/tc-7-1411-2013.CrossRef
    Bouman J., Fuchs M., Ivins E., van der Wal W., Schrama E., Visser P. and Horwath M., 2014. Antarctic outlet glacier mass change resolved at basin scale from satellite gravity gradiometry. Geophys. Res. Lett., 41, 5919–5926, DOI: 10.1002/2014GL060637.CrossRef
    Bouman J., Ripens S., Gruber T., Koop R., Schrama R., Visser P., Tscherning C.C. and Veicherts M., 2008. Preprocessing of gravity gradients at the GOCE High-level processing facility. J. Geodesy, 83, 659–678, DOI: 10.1007/s00190-008-0279-9.CrossRef
    Brozena J., Chalona M., Forsberg R. and Mader G., 1992. The Greenland Aerogeophysical Project. EOS Trans. AGU, DOI: I10.1007/978-1-4613-9255-2_19.
    Bruinsma S.L., Marty J.C., Balmino G., Biancale R., Fö rste C., Abrikosov O. and Neumeyer H., 2010. GOCE gravity field recovery by means of the direct numerical method. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6.
    Herceg M., Tscherning C.C. and Levinsen J.F., 2014. Sensitivity of GOCE gradients on Greenland mass variation and changes in ice topography. J. Geod. Sci., 4, 8–18., DOI: 10.2478/jogs- 2014-0001.
    Herceg M., 2012. GOCE Data for Ocean Modelling. Ph.D. Thesis. Department of Geodesy, Technical University of Denmark, Copenhagen, Denmark
    Herceg M., Knudsen P. and Tscherning C.C., 2014. GOCE data for local geoid enhancement. In: Marti U. (Ed.), Gravity, Geoid and Height Systems. International Association of Geodesy Symposia 141, Springer-Verlag, Heidelberg, Germany, 133–142.
    Howat I.M., Ahn Y., Joughin I., Van den Broeke M.R., Lenaerts J.T.M. and Smith B., 2011. Mass balance of Greenland’s three largest outlet glaciers, 2000-2010. Geophys. Res. Lett., 38, L12501, DOI: 10.1029/2011GL047565.CrossRef
    Johannesen J.A., Balmino G., Le Provost C., Rummel R., Sabadini R., Suenkel H., Tscherning C.C., Visser P., Woodworth P., Huges C.H., Le Grand P., Sneeuw N., Perosanz F., Aguirre-Martinez M., Rebhan H. and Drinkwater M., 2003. The European gravity field and steadystate ocean circulation explorer mission: impact on geophysics. Surv. Geophys., 24, 339–386, DOI: 10.1023/B:GEOP.0000004264.04667.5e.CrossRef
    Kejlsø E., 1958. Gravity Measurements in Western Greenland 1950-1952. Geodaetisk Instituts Skrifter, 3. RK., Vol. 27, Geodetic Institute, Copenhagen, Denmark, 69 pp.
    Krarup T., 1969. A Contribution to the Mathematical Foundation of Physical Geodesy. Meddelelse no. 44, Geodetic Institute, Copenhagen, Denmark.
    Levinsen J.F., Howat I.M. and Tscherning C.C., 2013. Improving maps of ice sheet surface elevation change using combined laser altimeter and stereoscopic elevation model data. J. Glaciol., 59, 525–532, DOI: 10.3189/2013JoG12J114.
    Luthcke S.B., Sabaka T.J., Loomis B.D., Arendt A.A., McCarthy J.J. and Camp J., 2013. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol., 59, 613–631, DOI: 10.3189/2013JoG12J147.CrossRef
    Moritz, H., 1980. Advanced Physical Geodesy. 1st Edition. Wichmann, Karlsruhe, Germany.
    Pail R., Bruinsma S., Migliaccio F., Förste C., Goiginger H., Schuh W.-D, Höck E., Reguzzoni M., Brockmann J.M., Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sansó F. and Tscherning, C.C., 2011. First GOCE gravity field models derived by three different approaches. J. Geodesy, 85, 819–843, DOI: 10.1007/s00190-011-0467-x.CrossRef
    Rowlands D.D., Luthcke S.B., Klosko S.M., Lemoine F.G.R., Chinn D.S., McCarthy J.J., Cox C.M. and Anderson O.B., 2005. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett., 32, L04310, DOI: 10.1029/2004GL021908.CrossRef
    Shepherd A., Ivins E.R., Geruo A, Barletta V.R., Bentley M.J., Bettadpur S., Briggs K.H., Bromwich D.H., Forsberg R., Galin N., Horwath M., Jacobs S., Joughin I., King M.A., Lenaerts J.T.M., Li J., Ligtenberg S.R.M., Luckman A., Luthcke S.B., McMillan M., Meister R., Milne G., Mouginot J., Muir A., Nicolas J.P., Paden J., Payne A.J., Pritchard H., Rignot E., Rott H., Sø rensen L.S., Scambos T.A., Scheuchl B., Schrama E.J.O., Smith B., Sundal A.V., van Angelen J.H., van de Berg W.J., van den Broeke M.R., Vaughan D.G., Velicogna I., Wahr J., Whitehouse P.L., Wingham D.J., Yi D., Young D. and Zwally H.J., 2012. A reconciled estimate of ice-sheet mass balance. Science, 338, 1183–1189. DOI: 10.1126/science.1228102.CrossRef
    Svejgaard B., 1959. Gravity Measurements in Western Greenland 1953-1955. Geodaetisk Instituts Skrifter, 3. RK., Vol. 32, Geodetic Institute, Copenhagen, Denmark.
    Sørensen S.L., 2010. Changes of the Greenland Ice Sheet Derived from ICESat and GRACE Data. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark.
    Tapley D.B., Bettadpur S., Watkin M. and Reigber C., 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, DOI: 10.1029/2004GL019920.CrossRef
    Tscherning C.C., 1974. A FORTRAN IVProgram for the Determination of the Anomalous Potential Using Stepwise Least Squares Collocation. Report 212. Department of Geodetic Science, The Ohio State University, Columbus, Ohio.
    Tscherning C.C., 1976. Covariance Expressions for Second and Lower Order Derivatives of the Anomalous Potential. Report 225. Department of Geodetic Science, The Ohio State University, Columbus, Ohio.
    Tscherning C.C., 2015. Developments in the implementation and use of Least-Squares Collocation. In: International Association of Geodesy Symposia 143, Springer-Verlag, Heidelberg, Germany, DOI: 10.1007/1345_2015_54 (in print).
    Tscherning C.C. and Arabelos, D. 2011. Gravity anomaly and gradient recovery from GOCE gradient data using LSC and comparisons with known ground data. Proceedings 4th International GOCE User Workshop, 31 March - April 1, 2011. ESA Publications Division, Nordwijk, The Netherlands, SP-696.
    Tscherning C.C., Forsberg R. and Knudsen, P., 1992. GRAVSOFT - A System for Geodetic Gravity Field Modelling. In: Holota P. and Vermeer M. (Eds), First Continental Workshop on the Geoid in Europe: Towards a Precise Pan-European Reference Geoid for the Nineties, Prague, May 11-14, 1992. Research Institute of Geodesy, Topography and Cartography, Prague, Czech Republic, 327–334.
    Tscherning C.C., Rubek F. and Forsberg R., 1998. Combining airborne and ground gravity using collocation. In: Forsberg R., Feissl M. and Dietrich R. (Eds), Geodesy on the Move. International Association of Geodesy Symposia 119, Springer-Verlag, Heidelberg, Germany 18–23, DOI: 10.1007/978-3-642-72245-5_3.CrossRef
    Tscherning C.C. and Veicherts M., 2007. Optimization of gradient prediction. http://​cct.​gfy.​ku.​dk/​publ_​cct/​cct1912.​pdf
    Wang W., Li J. and Zwally, H.J., 2012. Dynamic inland propagation of thinning due to ice loss at the margins of the Greenland ice sheet. J. tGlaciol., 58, 734–740, DOI: 10.3189/2012JoG11J187.CrossRef
    Wouters B., Chambers D. and Schrama E.J.O., 2008. GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett., 35, L20501, DOI: 10.1029/2008GL034816.CrossRef
  • 作者单位:Carl Christian Tscherning (1)
    Matija Herceg (2)

    1. Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100, Copenhagen Ø, Denmark
    2. Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350, København K, Denmark
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Structural Geology
    Meteorology and Climatology
  • 出版者:Springer Netherlands
  • ISSN:1573-1626
文摘
Vertical gravity gradient anomalies from the Gravity and steady-state Ocean Circulation Explorer (GOCE) DIR-3 model have been used to determine gravity anomalies in mid-west Greenland by using Least-Squares Collocation (LSC) and the Reduced Point Mass (RPM) method. The two methods give nearly identical results. However, compared to LSC, the RPM method needs less computational time as the number of equations to be solved in LSC equals the number of observations. The advantage of the LSC, however, is the acquired error estimates. The observation periods are winter 2009 and summer 2012. In order to enhance the accuracy of the calculated gravity anomalies, ground gravity data from West Greenland is used over locations where the gravity change resulting from ice mass changes is negligible, i.e. over solid rock. In the period considered, the gravity anomaly change due to changes in ice mass varies from −5 mGal to 4 mGal. It is negative over the outlet glacier Jacobshavn Isbræ, where the mass loss corresponds to a gravity change of approximately −4 mGal. When using only GOCE vertical gravity gradients, the error estimates range from 5 mGal at the coast to 17 mGal over the ice sheet. Introducing the ground gravity data from West Greenland in the prediction reduces the errors to range from 2 to 10 mGal. Keywords GOCE gradients ice-mass Least-Squares Collocation Reduced Point Mass

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700