Transcriptome profiling in engrailed-2 mutant mice reveals common molecular pathways associated with autism spectrum disorders
详细信息    查看全文
  • 作者:Paola Sgadò (1)
    Giovanni Provenzano (1)
    Erik Dassi (2)
    Valentina Adami (3)
    Giulia Zunino (1)
    Sacha Genovesi (1)
    Simona Casarosa (4) (5)
    Yuri Bozzi (1) (5)
  • 关键词:En2 ; Neurodevelopmental disorders ; Mouse models ; Immune response ; Synaptic function ; Scn1a ; Grm5 ; Nrxn3
  • 刊名:Molecular Autism
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:4
  • 期:1
  • 全文大小:300 KB
  • 参考文献:1. Rapin I, Tuchman RF: Autism: definition, neurobiology, screening, diagnosis. / Pediatr Clin North Am 2008, 46:1129. viii CrossRef
    2. Dicicco-Bloom E, Lord C, Zwaigenbaum L, Courchesne E, Dager SR, Schmitz C, Schultz RT, Crawley J, Young LJ: The developmental neurobiology of autism spectrum disorder. / J Neurosci 2006, 26:6897-906. CrossRef
    3. Pardo CA, Eberhart CG: The neurobiology of autism. / Brain Pathol 2007, 17:434-47. CrossRef
    4. Courchesne E: Brain development in autism: early overgrowth followed by premature arrest of growth. / Ment Retard Dev Disabil Res Rev 2004, 10:106-11. CrossRef
    5. Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P: A clinicopathological study of autism. / Brain 1998, 121:889-05. CrossRef
    6. Voineagu I: Gene expression studies in autism: moving from the genome to the transcriptome and beyond. / Neurobiol Dis 2012, 45:69-5. CrossRef
    7. Huguet G, Ey E, Bourgeron T: The genetic landscapes of autism spectrum disorders. / Annu Rev Genomics Hum Genet 2013, 14:191-13. CrossRef
    8. Lintas C, Sacco R, Persico AM: Genome-wide expression studies in autism spectrum disorder, Rett syndrome, and Down syndrome. / Neurobiol Dis 2012, 45:57-8. CrossRef
    9. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ, Geschwind DH: Transcriptomic analysis of autistic brain reveals convergent molecular pathology. / Nature 2011, 474:380-84. CrossRef
    10. Cheng Y, Sudarov A, Szulc KU, Sgaier SK, Stephen D, Turnbull DH, Joyner AL: The Engrailed homeobox genes determine the different foliation patterns in the vermis and hemispheres of the mammalian cerebellum. / Development 2010, 137:519-29. CrossRef
    11. Gherbassi D, Simon HH: The engrailed transcription factors and the mesencephalic dopaminergic neurons. / J Neural Transm Suppl 2006, 70:47-5.
    12. Herrup K, Murcia C, Gulden F, Kuemerle B, Bilovocky N: The genetics of early cerebellar development: networks not pathways. / Prog Brain Res 2005, 148:21-7. CrossRef
    13. Joyner AL: Engrailed, Wnt and Pax genes regulate midbrain–hindbrain development. / Trends Genet 1996, 12:15-0. CrossRef
    14. Sgaier SK, Lao Z, Villanueva MP, Berenshteyn F, Stephen D, Turnbull RK, Joyner AL: Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins. / Development 2007, 134:2325-335. CrossRef
    15. Orvis GD, Hartzell AL, Smith JB, Barraza LH, Wilson SL, Szulc KU, Turnbull DH, Joyner AL: The engrailed homeobox genes are required in multiple cell lineages to coordinate sequential formation of fissures and growth of the cerebellum. / Dev Biol 2012, 367:25-9. CrossRef
    16. Gharani N, Benayed R, Mancuso V, Brzustowicz LM, Millonig JH: Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. / Mol Psychiatry 2004, 9:474-84. CrossRef
    17. Benayed R, Gharani N, Rossman I, Mancuso V, Lazar G, Kamdar S, Bruse SE, Tischfield S, Smith BJ, Zimmerman RA, Dicicco-Bloom E, Brzustowicz LM, Millonig JH: Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. / Am J Hum Genet 2005, 77:851-68. CrossRef
    18. Benayed R, Choi J, Matteson PG, Gharani N, Kamdar S, Brzustowicz LM, Millonig JH: Autism-associated haplotype affects the regulation of the homeobox gene, ENGRAILED 2. / Biol Psychiatry 2009, 66:911-17. CrossRef
    19. James SJ, Shpyleva S, Melnyk S, Pavliv O, Pogribny IP: Complex epigenetic regulation of Engrailed-2 (EN-2) homeobox gene in the autism cerebellum. / Transl Psychiatry 2013, 3:e232. CrossRef
    20. Joyner AL, Herrup K, Auerbach BA, Davis CA, Rossant J: Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. / Science 1991, 251:1239-243. CrossRef
    21. Millen KJ, Wurst W, Herrup K, Joyner AL: Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. / Development 1994, 120:695-06.
    22. Millen KJ, Hui CC, Joyner AL: A role for En-2 and other murine homologues of Drosophila segment polarity genes in regulating positional information in the developing cerebellum. / Development 1995, 121:3935-945.
    23. Kuemerle B, Zanjani H, Joyner A, Herrup K: Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. / J Neurosci 1997, 17:7881-889.
    24. Gerlai R, Millen KJ, Herrup K, Fabien K, Joyner AL, Roder J: Impaired motor learning performance in cerebellar En-2 mutant mice. / Behav Neurosci 1996, 110:126-33. CrossRef
    25. Cheh MA, Millonig JH, Roselli LM, Ming X, Jacobsen E, Kamdar S, Wagner GC: En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. / Brain Res 2006, 1116:166-76. CrossRef
    26. Brielmaier J, Matteson PG, Silverman JL, Senerth JM, Kelly S, Genestine M, Millonig JH, Dicicco-Bloom E, Crawley JN: Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. / PLoS ONE 2012, 7:e40914. CrossRef
    27. Sgadò P, Genovesi S, Kalinovsky A, Zunino G, Macchi F, Allegra M, Murenu E, Provenzano G, Tripathi PP, Casarosa S, Joyner AL, Bozzi Y: Loss of GABAergic neurons in the hippocampus and cerebral cortex of Engrailed-2 null mutant mice: Implications for autism spectrum disorders. / Exp Neurol 2013, 247:496-05. CrossRef
    28. Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J: RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. / Bioinformatics 2006, 22:2825-827. CrossRef
    29. Breitling R, Armengaud P, Amtmann A, Herzyk P: Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. / FEBS Lett 2004, 573:83-2. CrossRef
    30. Tripathi PP, Sgado P, Scali M, Viaggi C, Casarosa S, Simon HH, Vaglini F, Corsini GU, Bozzi Y: Increased susceptibility to kainic acid-induced seizures in Engrailed-2 knockout mice. / Neuroscience 2009, 159:842-49. CrossRef
    31. Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. / Nucleic Acids Res 2001, 29:e45. CrossRef
    32. Lauvin M-A, Martineau J, Destrieux C, Andersson F, Bonnet-Brilhault F, Gomot M, El-Hage W, Cottier J-P: Functional morphological imaging of autism spectrum disorders: current position and theories proposed. / Diagn Interv Imaging 2012, 93:139-47. CrossRef
    33. Boddaert N, Chabane N, Gervais H, Good CD, Bourgeois M, Plumet M-H, Barthélémy C, Mouren M-C, Artiges E, Samson Y, Brunelle F, Frackowiak RSJ, Zilbovicius M: Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. / Neuroimage 2004, 23:364-69. CrossRef
    34. Gendry Meresse I, Zilbovicius M, Boddaert N, Robel L, Philippe A, Sfaello I, Laurier L, Brunelle F, Samson Y, Mouren M-C, Chabane N: Autism severity and temporal lobe functional abnormalities. / Ann Neurol 2005, 58:466-69. CrossRef
    35. Smith CL, Goldsmith C-AW, Eppig JT: The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. / Genome Biol 2005, 6:R7. CrossRef
    36. Chen J, Xu H, Aronow BJ, Jegga AG: Improved human disease candidate gene prioritization using mouse phenotype. / BMC Bioinformatics 2007, 8:392. CrossRef
    37. Alvarez-Fischer D, Fuchs J, Castagner F, Stettler O, Massiani-Beaudoin O, Moya KL, Bouillot C, Oertel WH, Lombès A, Faigle W, Joshi RL, Hartmann A, Prochiantz A: Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults. / Nat Neurosci 2011, 14:1260-266. CrossRef
    38. Sgadò P, Albéri L, Gherbassi D, Galasso SL, Ramakers GMJ, Alavian KN, Smidt MP, Dyck RH, Simon HH: Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. / Proc Natl Acad Sci USA 2006, 103:15242-5247. CrossRef
    39. Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J: Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. / Neurology 2001, 57:1618-628. CrossRef
    40. Garbett K, Ebert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K, Persico AM: Immune transcriptome alterations in the temporal cortex of subjects with autism. / Neurobiol Dis 2008, 30:303-11. CrossRef
    41. Ziats MN, Rennert OM: Expression profiling of autism candidate genes during human brain development implicates central immune signaling pathways. / PLoS ONE 2011, 6:e24691. CrossRef
    42. Buxbaum JD, Betancur C, Bozdagi O, Dorr NP, Elder GA, Hof PR: Optimizing the phenotyping of rodent ASD models: Enrichment analysis of mouse and human neurobiological phenotypes associated with high-risk autism genes identifies morphological, electrophysiological, neurological, and behavioral features. / Mol Autism 2012, 3:1. CrossRef
    43. Bear MF, Huber KM, Warren ST: The mGluR theory of fragile X mental retardation. / Trends Neurosci 2004, 27:370-77. CrossRef
    44. D?len G, Osterweil E, Rao BSS, Smith GB, Auerbach BD, Chattarji S, Bear MF: Correction of fragile X syndrome in mice. / Neuron 2007, 56:955-62. CrossRef
    45. Verpelli C, Dvoretskova E, Vicidomini C, Rossi F, Chiappalone M, Schoen M, Di Stefano B, Mantegazza R, Broccoli V, B?ckers TM, Dityatev A, Sala C: Importance of Shank3 Protein in Regulating Metabotropic Glutamate Receptor 5 (mGluR5) Expression and Signaling at Synapses. / J Biol Chem 2011, 286:34839-4850. CrossRef
    46. Siddiqui TJ, Craig AM: Synaptic organizing complexes. / Curr Opin Neurobiol 2011, 21:132-43. CrossRef
    47. Vaags AK, Lionel AC, Sato D, Goodenberger M, Stein QP, Curran S, Ogilvie C, Ahn JW, Drmic I, Senman L, Chrysler C, Thompson A, Russell C, Prasad A, Walker S, Pinto D, Marshall CR, Stavropoulos DJ, Zwaigenbaum L, Fernandez BA, Fombonne E, Bolton PF, Collier DA, Hodge JC, Roberts W, Szatmari P, Scherer SW: Rare deletions at the neurexin 3 locus in autism spectrum disorder. / Am J Hum Genet 2012, 90:133-41. CrossRef
    48. Uemura T, Lee S-J, Yasumura M, Takeuchi T, Yoshida T, Ra M, Taguchi R, Sakimura K, Mishina M: Trans-Synaptic Interaction of GluRδ2 and Neurexin through Cbln1 Mediates Synapse Formation in the Cerebellum. / Cell 2010, 141:1068-079. CrossRef
    49. Mishina M, Uemura T, Yasumura M, Yoshida T: Molecular mechanism of parallel fiber-Purkinje cell synapse formation. / Front Neural Circuits 2012, 6:90. CrossRef
    50. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P: De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. / Am J Hum Genet 2001, 68:1327-332. CrossRef
    51. O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, Carvill G, Kumar A, Lee C, Ankenman K, Munson J, Hiatt JB, Turner EH, Levy R, O’Day DR, Krumm N, Coe BP, Martin BK, Borenstein E, Nickerson DA, Mefford HC, Doherty D, Akey JM, Bernier R, Eichler EE, Shendure J: Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. / Science 2012, 338:1619-622. CrossRef
    52. Frosk P, Mhanni AA, Rafay MF: SCN1A Mutation associated with intractable Myoclonic Epilepsy and Migraine Headache. / J Child Neurol 2013, 28:389-91. CrossRef
    53. Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, Spain WJ, McKnight GS, Scheuer T, Catterall WA: Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. / Nat Neurosci 2006, 9:1142-149. CrossRef
    54. Oakley JC, Kalume F, Yu FH, Scheuer T, Catterall WA: Temperature- and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy. / Proc Natl Acad Sci USA 2009, 106:3994-999. CrossRef
    55. Jankowski J, Holst MI, Liebig C, Oberdick J, Baader SL: Engrailed-2 negatively regulates the onset of perinatal Purkinje cell differentiation. / J Comp Neurol 2004, 472:87-9. CrossRef
    56. Baader SL, Sanlioglu S, Berrebi AS, Parker-Thornburg J, Oberdick J: Ectopic overexpression of engrailed-2 in cerebellar Purkinje cells causes restricted cell loss and retarded external germinal layer development at lobule junctions. / J Neurosci 1998, 18:1763-773.
    57. Sillitoe RV, Vogel MW, Joyner AL: Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map. / J Neurosci 2010, 30:10015-0024. CrossRef
    58. Olivetti PR, Noebels JL: Interneuron, interrupted: molecular pathogenesis of ARX mutations and X-linked infantile spasms. / Curr Opin Neurobiol 2012, 22:859-65. CrossRef
    59. Na ES, Nelson ED, Kavalali ET, Monteggia LM: The impact of MeCP2 loss- or gain-of-function on synaptic plasticity. / Neuropsychopharmacology 2013, 38:212-19. CrossRef
    60. Holst MI, Maercker C, Pintea B, Masseroli M, Liebig C, Jankowski J, Miething A, Martini J, Schwaller B, Oberdick J, Schilling K, Baader SL: Engrailed-2 regulates genes related to vesicle formation and transport in cerebellar Purkinje cells. / Mol Cell Neurosci 2008, 38:495-04. CrossRef
  • 作者单位:Paola Sgadò (1)
    Giovanni Provenzano (1)
    Erik Dassi (2)
    Valentina Adami (3)
    Giulia Zunino (1)
    Sacha Genovesi (1)
    Simona Casarosa (4) (5)
    Yuri Bozzi (1) (5)

    1. Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123, Trento, Italy
    2. Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123, Trento, Italy
    3. High Throughput Screening Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123, Trento, Italy
    4. Laboratory of Developmental Neurobiology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123, Trento, Italy
    5. C.N.R. Neuroscience Institute, via G. Moruzzi 1, 56124, Pisa, Italy
  • ISSN:2040-2392
文摘
Background Transcriptome analysis has been used in autism spectrum disorder (ASD) to unravel common pathogenic pathways based on the assumption that distinct rare genetic variants or epigenetic modifications affect common biological pathways. To unravel recurrent ASD-related neuropathological mechanisms, we took advantage of the En2 -/- mouse model and performed transcriptome profiling on cerebellar and hippocampal adult tissues. Methods Cerebellar and hippocampal tissue samples from three En2 -/- and wild type (WT) littermate mice were assessed for differential gene expression using microarray hybridization followed by RankProd analysis. To identify functional categories overrepresented in the differentially expressed genes, we used integrated gene-network analysis, gene ontology enrichment and mouse phenotype ontology analysis. Furthermore, we performed direct enrichment analysis of ASD-associated genes from the SFARI repository in our differentially expressed genes. Results Given the limited number of animals used in the study, we used permissive criteria and identified 842 differentially expressed genes in En2 -/- cerebellum and 862 in the En2 -/- hippocampus. Our functional analysis revealed that the molecular signature of En2 -/- cerebellum and hippocampus shares convergent pathological pathways with ASD, including abnormal synaptic transmission, altered developmental processes and increased immune response. Furthermore, when directly compared to the repository of the SFARI database, our differentially expressed genes in the hippocampus showed enrichment of ASD-associated genes significantly higher than previously reported. qPCR was performed for representative genes to confirm relative transcript levels compared to those detected in microarrays. Conclusions Despite the limited number of animals used in the study, our bioinformatic analysis indicates the En2 -/- mouse is a valuable tool for investigating molecular alterations related to ASD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700