Genome resequencing and bioinformatic analysis of SNP containing candidate genes in the autoimmune vitiligo Smyth line chicken model
详细信息    查看全文
  • 作者:Hyeon-Min Jang (4)
    Gisela F Erf (4)
    Kaylee C Rowland (4)
    Byung-Whi Kong (4)

    4. Department of Poultry Science
    ; Center of Excellence for Poultry Science ; University of Arkansas ; POSC O-404 ; 1260 West Maple ; Fayetteville ; AR ; 72701 ; USA
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:3,819 KB
  • 参考文献:1. Spritz, RA (2012) Six decades of vitiligo genetics: genome-wide studies provide insights into autoimmune pathogenesis. J Invest Dermatol 132: pp. 268-273 CrossRef
    2. Erf, GF Ainmal Models. In: Picardo, M, Taieb, A eds. (2010) Vitiligo. Springer-Verlag GmbH, Berlin Heidelberg, Germany, pp. 205-218 CrossRef
    3. Erf, GF Autoimmune Diseases of Poultry. In: Davison, F, Kaspers, B, Schat, K eds. (2008) Avian Immunology. Elsevier, London
    4. Cotsapas, C, Hafler, DA (2013) Immune-mediated disease genetics: the shared basis of pathogenesis. Trends Immunol 34: pp. 22-26 CrossRef
    5. Cheong, KA, Kim, NH, Noh, M, Lee, AY (2013) Three new single nucleotide polymorphisms identified by a genome-wide association study in Korean patients with vitiligo. J Korean Med Sci 28: pp. 775-779 CrossRef
    6. Jin, Y, Birlea, SA, Fain, PR, Ferrara, TM, Ben, S, Riccardi, SL, Cole, JB, Gowan, K, Holland, PJ, Bennett, DC, Luiten, RM, Wolkerstorfer, A, van der Veen, JP, Hartmann, A, Eichner, S, Schuler, G, van Geel, N, Lambert, J, Kemp, EH, Gawkrodger, DJ, Weetman, AP, Taieb, A, Jouary, T, Ezzedine, K, Wallace, MR, McCormack, WT, Picardo, M, Leone, G, Overbeck, A, Silverberg, NB (2012) Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet 44: pp. 676-680 CrossRef
    7. Jin, Y, Birlea, SA, Fain, PR, Gowan, K, Riccardi, SL, Holland, PJ, Bennett, DC, Herbstman, DM, Wallace, MR, McCormack, WT, Kemp, EH, Gawkrodger, DJ, Weetman, AP, Picardo, M, Leone, G, Taieb, A, Jouary, T, Ezzedine, K, van Geel, N, Lambert, J, Overbeck, A, Spritz, RA (2011) Genome-wide analysis identifies a quantitative trait locus in the MHC class II region associated with generalized vitiligo age of onset. J Invest Dermatol 131: pp. 1308-1312 CrossRef
    8. Jin, Y, Ferrara, T, Gowan, K, Holcomb, C, Rastrou, M, Erlich, HA, Fain, PR, Spritz, RA (2012) Next-generation DNA re-sequencing identifies common variants of TYR and HLA-A that modulate the risk of generalized vitiligo via antigen presentation. J Invest Dermatol 132: pp. 1730-1733 CrossRef
    9. Tang, J, Liu, JL, Zhang, C, da Hu, Y, He, SM, Zuo, XB, Wang, PG, Sun, LD, Zhang, XJ, Yang, S (2013) The association between a single nucleotide polymorphism rs11966200 in MHC region and clinical features of generalized vitiligo in Chinese Han population. Mol Biol Rep 40: pp. 4097-4100 CrossRef
    10. Tang, XF, Zhang, Z, Hu, DY, Xu, AE, Zhou, HS, Sun, LD, Gao, M, Gao, TW, Gao, XH, Chen, HD, Xie, HF, Tu, CX, Hao, F, Wu, RN, Zhang, FR, Liang, L, Pu, XM, Zhang, JZ, Han, JW, Pan, GP, Wu, JQ, Li, K, Su, MW, Du, WD, Zhang, WJ, Liu, JJ, Xiang, LH, Yang, S, Zhou, YW, Zhang, XJ (2013) Association analyses identify three susceptibility loci for vitiligo in the Chinese Han population. J Invest Dermatol 133: pp. 403-410 CrossRef
    11. Hindorff, LA, Sethupathy, P, Junkins, HA, Ramos, EM, Mehta, JP, Collins, FS, Manolio, TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106: pp. 9362-9367 CrossRef
    12. Maurano, MT, Humbert, R, Rynes, E, Thurman, RE, Haugen, E, Wang, H, Reynolds, AP, Sandstrom, R, Qu, H, Brody, J, Shafer, A, Neri, F, Lee, K, Kutyavin, T, Stehling-Sun, S, Johnson, AK, Canfield, TK, Giste, E, Diegel, M, Bates, D, Hansen, RS, Neph, S, Sabo, PJ, Heimfeld, S, Raubitschek, A, Ziegler, S, Cotsapas, C, Sotoodehnia, N, Glass, I, Sunyaev, SR (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337: pp. 1190-1195 CrossRef
    13. Shi, F, Kong, BW, Song, JJ, Lee, JY, Dienglewicz, RL, Erf, GF (2012) Understanding mechanisms of vitiligo development in Smyth line of chickens by transcriptomic microarray analysis of evolving autoimmune lesions. BMC Immunol 13: pp. 18-2172-13-18 CrossRef
    14. Nielsen, R, Paul, JS, Albrechtsen, A, Song, YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12: pp. 443-451 CrossRef
    15. Balakrishnan, A, Bleeker, FE, Lamba, S, Rodolfo, M, Daniotti, M, Scarpa, A, van Tilborg, AA, Leenstra, S, Zanon, C, Bardelli, A (2007) Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma. Cancer Res 67: pp. 3545-3550 CrossRef
    16. Tamura, Y, Adachi, H, Osuga, J, Ohashi, K, Yahagi, N, Sekiya, M, Okazaki, H, Tomita, S, Iizuka, Y, Shimano, H, Nagai, R, Kimura, S, Tsujimoto, M, Ishibashi, S (2003) FEEL-1 and FEEL-2 are endocytic receptors for advanced glycation end products. J Biol Chem 278: pp. 12613-12617 CrossRef
    17. Nikolaev, SI, Rimoldi, D, Iseli, C, Valsesia, A, Robyr, D, Gehrig, C, Harshman, K, Guipponi, M, Bukach, O, Zoete, V, Michielin, O, Muehlethaler, K, Speiser, D, Beckmann, JS, Xenarios, I, Halazonetis, TD, Jongeneel, CV, Stevenson, BJ, Antonarakis, SE (2011) Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet 44: pp. 133-139 CrossRef
    18. Spoelgen, R, Hammes, A, Anzenberger, U, Zechner, D, Andersen, OM, Jerchow, B, Willnow, TE (2005) LRP2/megalin is required for patterning of the ventral telencephalon. Development 132: pp. 405-414 CrossRef
    19. Kouprina, N, Pavlicek, A, Collins, NK, Nakano, M, Noskov, VN, Ohzeki, J, Mochida, GH, Risinger, JI, Goldsmith, P, Gunsior, M, Solomon, G, Gersch, W, Kim, JH, Barrett, JC, Walsh, CA, Jurka, J, Masumoto, H, Larionov, V (2005) The microcephaly ASPM gene is expressed in proliferating tissues and encodes for a mitotic spindle protein. Hum Mol Genet 14: pp. 2155-2165 CrossRef
    20. Choi, KY, Chang, K, Pickel, JM, Badger, JD 2nd, Roche, KW (2011) Expression of the metabotropic glutamate receptor 5 (mGluR5) induces melanoma in transgenic mice. Proc Natl Acad Sci U S A 108: pp. 15219-15224 CrossRef
    21. Jensen, RB, Carreira, A, Kowalczykowski, SC (2010) Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467: pp. 678-683 CrossRef
    Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J Natl Cancer Inst 91: pp. 1310-1316 CrossRef
    22. Otten, C, van der Ven, PF, Lewrenz, I, Paul, S, Steinhagen, A, Busch-Nentwich, E, Eichhorst, J, Wiesner, B, Stemple, D, Strahle, U, Furst, DO, Abdelilah-Seyfried, S (2012) Xirp proteins mark injured skeletal muscle in zebrafish. PLoS One 7: pp. e31041 CrossRef
    23. Stewart, GS, Panier, S, Townsend, K, Al-Hakim, AK, Kolas, NK, Miller, ES, Nakada, S, Ylanko, J, Olivarius, S, Mendez, M, Oldreive, C, Wildenhain, J, Tagliaferro, A, Pelletier, L, Taubenheim, N, Durandy, A, Byrd, PJ, Stankovic, T, Taylor, AM, Durocher, D (2009) The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136: pp. 420-434 CrossRef
    24. Pimanda, JE, Maekawa, A, Wind, T, Paxton, J, Chesterman, CN, Hogg, PJ (2004) Congenital thrombotic thrombocytopenic purpura in association with a mutation in the second CUB domain of ADAMTS13. Blood 103: pp. 627-629 CrossRef
    25. Kornak, U, Reynders, E, Dimopoulou, A, van Reeuwijk, J, Fischer, B, Rajab, A, Budde, B, Nurnberg, P, Foulquier, F, Lefeber, D, Urban, Z, Gruenewald, S, Annaert, W, Brunner, HG, van Bokhoven, H, Wevers, R, Morava, E, Matthijs, G, Van Maldergem, L, Mundlos, S (2008) Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nat Genet 40: pp. 32-34 CrossRef
    26. Kiian, I, Tkachuk, N, Haller, H, Dumler, I (2003) Urokinase-induced migration of human vascular smooth muscle cells requires coupling of the small GTPases RhoA and Rac1 to the Tyk2/PI3-K signalling pathway. Thromb Haemost 89: pp. 904-914
    27. Bolon, I, Zhou, HM, Charron, Y, Wohlwend, A, Vassalli, JD (2004) Plasminogen mediates the pathological effects of urokinase-type plasminogen activator overexpression. Am J Pathol 164: pp. 2299-2304 CrossRef
    28. Le Poole, IC, Luiten, RM Autoimmune etiology of generalized vitiligo. In: Nickloff, BJ, Nestle, FO eds. (2008) Current directions in autoimmunity: dermatologic immunity. Volume 22. Karger, Basel, pp. 566-569
    29. Medrano, EE, Nordlund, JJ (1990) Successful culture of adult human melanocytes obtained from normal and vitiligo donors. J Invest Dermatol 95: pp. 441-445
    30. Bowers, RR, Nguyen, B, Buckner, S, Gonzalez, Y, Ruiz, F (1999) Role of antioxidants in the survival of normal and vitiliginous avian melanocytes. Cell Mol Biol (Noisy-le-grand) 45: pp. 1065-1074
    31. Spritz, RA (2011) The genetics of vitiligo. J Invest Dermatol 131: pp. E18-E20
    32. Wagner, SA, Beli, P, Weinert, BT, Nielsen, ML, Cox, J, Mann, M, Choudhary, C (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10: pp. M111.013284 CrossRef
    33. Wagner, SA, Beli, P, Weinert, BT, Scholz, C, Kelstrup, CD, Young, C, Nielsen, ML, Olsen, JV, Brakebusch, C, Choudhary, C (2012) Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics 11: pp. 1578-1585 CrossRef
    34. Danielsen, JM, Sylvestersen, KB, Bekker-Jensen, S, Szklarczyk, D, Poulsen, JW, Horn, H, Jensen, LJ, Mailand, N, Nielsen, ML (2011) Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics 10: pp. M110.003590 CrossRef
    35. Udeshi, ND, Mani, DR, Eisenhaure, T, Mertins, P, Jaffe, JD, Clauser, KR, Hacohen, N, Carr, SA (2012) Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics 11: pp. 148-159 CrossRef
    36. Lee, KA, Hammerle, LP, Andrews, PS, Stokes, MP, Mustelin, T, Silva, JC, Black, RA, Doedens, JR (2011) Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels. J Biol Chem 286: pp. 41530-41538 CrossRef
    37. Colland, F, Jacq, X, Trouplin, V, Mougin, C, Groizeleau, C, Hamburger, A, Meil, A, Wojcik, J, Legrain, P, Gauthier, JM (2004) Functional proteomics mapping of a human signaling pathway. Genome Res 14: pp. 1324-1332 CrossRef
    38. Patel, KG, Liu, C, Cameron, PL, Cameron, RS (2001) Myr 8, a novel unconventional myosin expressed during brain development associates with the protein phosphatase catalytic subunits 1alpha and 1gamma1. J Neurosci 21: pp. 7954-7968
    39. Hendrickx, A, Beullens, M, Ceulemans, H, Den Abt, T, Van Eynde, A, Nicolaescu, E, Lesage, B, Bollen, M (2009) Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem Biol 16: pp. 365-371 CrossRef
    40. Olah, J, Vincze, O, Virok, D, Simon, D, Bozso, Z, Tokesi, N, Horvath, I, Hlavanda, E, Kovacs, J, Magyar, A, Szucs, M, Orosz, F, Penke, B, Ovadi, J (2011) Interactions of pathological hallmark proteins: tubulin polymerization promoting protein/p25, beta-amyloid, and alpha-synuclein. J Biol Chem 286: pp. 34088-34100 CrossRef
    41. Mori, T, Wada, T, Suzuki, T, Kubota, Y, Inagaki, N (2007) Singar1, a novel RUN domain-containing protein, suppresses formation of surplus axons for neuronal polarity. J Biol Chem 282: pp. 19884-19893 CrossRef
    42. Eudy, JD, Weston, MD, Yao, S, Hoover, DM, Rehm, HL, Ma-Edmonds, M, Yan, D, Ahmad, I, Cheng, JJ, Ayuso, C, Cremers, C, Davenport, S, Moller, C, Talmadge, CB, Beisel, KW, Tamayo, M, Morton, CC, Swaroop, A, Kimberling, WJ, Sumegi, J (1998) Mutation of a gene encoding a protein with extracellular matrix motifs in Usher syndrome type IIa. Science 280: pp. 1753-1757 CrossRef
    43. Boissy, RE (1988) The melanocyte. Its structure, function, and subpopulations in skin, eyes, and hair. Dermatol Clin 6: pp. 161-173
    44. Boissy, RE, Moellmann, G, Trainer, AT, Smyth, JR, Lerner, AB (1986) Delayed-amelanotic (DAM or Smyth) chicken: melanocyte dysfunction in vivo and in vitro. J Invest Dermatol 86: pp. 149-156 CrossRef
    45. Chan, DW, Chen, BP, Prithivirajsingh, S, Kurimasa, A, Story, MD, Qin, J, Chen, DJ (2002) Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev 16: pp. 2333-2338 CrossRef
    46. Collingwood, TS, Smirnova, EV, Bogush, M, Carpino, N, Annan, RS, Tsygankov, AY (2007) T-cell ubiquitin ligand affects cell death through a functional interaction with apoptosis-inducing factor, a key factor of caspase-independent apoptosis. J Biol Chem 282: pp. 30920-30928 CrossRef
    47. Kato, H, Takeuchi, O, Sato, S, Yoneyama, M, Yamamoto, M, Matsui, K, Uematsu, S, Jung, A, Kawai, T, Ishii, KJ, Yamaguchi, O, Otsu, K, Tsujimura, T, Koh, CS, Reis, e S C, Matsuura, Y, Fujita, T, Akira, S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: pp. 101-105 CrossRef
    48. Smyth, DJ, Cooper, JD, Bailey, R, Field, S, Burren, O, Smink, LJ, Guja, C, Ionescu-Tirgoviste, C, Widmer, B, Dunger, DB, Savage, DA, Walker, NM, Clayton, DG, Todd, JA (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38: pp. 617-619 CrossRef
    49. Sutherland, A, Davies, J, Owen, CJ, Vaikkakara, S, Walker, C, Cheetham, TD, James, RA, Perros, P, Donaldson, PT, Cordell, HJ, Quinton, R, Pearce, SH (2007) Genomic polymorphism at the interferon-induced helicase (IFIH1) locus contributes to Graves鈥?disease susceptibility. J Clin Endocrinol Metab 92: pp. 3338-3341 CrossRef
    50. Martinez, A, Santiago, JL, Cenit, MC, de Las, HV, de la Calle, H, Fernandez-Arquero, M, Arroyo, R, de la Concha, EG, Urcelay, E (2008) IFIH1-GCA-KCNH7 locus: influence on multiple sclerosis risk. Eur J Hum Genet 16: pp. 861-864 CrossRef
    51. Li, Y, Liao, W, Cargill, M, Chang, M, Matsunami, N, Feng, BJ, Poon, A, Callis-Duffin, KP, Catanese, JJ, Bowcock, AM, Leppert, MF, Kwok, PY, Krueger, GG, Begovich, AB (2010) Carriers of rare missense variants in IFIH1 are protected from psoriasis. J Invest Dermatol 130: pp. 2768-2772 CrossRef
    52. Gateva, V, Sandling, JK, Hom, G, Taylor, KE, Chung, SA, Sun, X, Ortmann, W, Kosoy, R, Ferreira, RC, Nordmark, G, Gunnarsson, I, Svenungsson, E, Padyukov, L, Sturfelt, G, Jonsen, A, Bengtsson, AA, Rantapaa-Dahlqvist, S, Baechler, EC, Brown, EE, Alarcon, GS, Edberg, JC, Ramsey-Goldman, R, McGwin, G, Reveille, JD, Vila, LM, Kimberly, RP, Manzi, S, Petri, MA, Lee, A, Gregersen, PK (2009) A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 41: pp. 1228-1233 CrossRef
    53. Baaten, BJ, Li, CR, Bradley, LM (2010) Multifaceted regulation of T cells by CD44. Commun Integr Biol 3: pp. 508-512 CrossRef
    54. Ramos, PS, Williams, AH, Ziegler, JT, Comeau, ME, Guy, RT, Lessard, CJ, Li, H, Edberg, JC, Zidovetzki, R, Criswell, LA, Gaffney, PM, Graham, DC, Graham, RR, Kelly, JA, Kaufman, KM, Brown, EE, Alarcon, GS, Petri, MA, Reveille, JD, McGwin, G, Vila, LM, Ramsey-Goldman, R, Jacob, CO, Vyse, TJ, Tsao, BP, Harley, JB, Kimberly, RP, Alarcon-Riquelme, ME, Langefeld, CD, Moser, KL (2011) Genetic analyses of interferon pathway-related genes reveal multiple new loci associated with systemic lupus erythematosus. Arthritis Rheum 63: pp. 2049-2057 CrossRef
    55. Omran, H, Haffner, K, Volkel, A, Kuehr, J, Ketelsen, UP, Ross, UH, Konietzko, N, Wienker, T, Brandis, M, Hildebrandt, F (2000) Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. Am J Respir Cell Mol Biol 23: pp. 696-702 CrossRef
    56. Zariwala, MA, Knowles, MR, Omran, H (2007) Genetic defects in ciliary structure and function. Annu Rev Physiol 69: pp. 423-450 CrossRef
    57. Kong, BW, Lee, JY, Bottje, WG, Lassiter, K, Lee, J, Foster, DN (2011) Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line. BMC Genomics 12: pp. 571-2164-12-571 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background The Smyth line (SL) chicken is the only animal model for autoimmune vitiligo that spontaneously displays all clinical and biological manifestations of the human disorder. To understand the genetic components underlying the susceptibility to develop SL vitiligo (SLV), whole genome resequencing analysis was performed in SLV chickens compared with non-vitiliginous parental Brown line (BL) chickens, which maintain a very low incidence rate of vitiligo. Results Illumina sequencing technology and reference based assembly on Red Jungle Fowl genome sequences were used. Results of genome resequencing of pooled DNA of each 10 BL and SL chickens reached 5.1x and 7.0x coverage, respectively. The total number of SNPs was 4.8 and 5.5 million in BL and SL genome, respectively. Through a series of filtering processes, a total of ~1 million unique SNPs were found in the SL alone. Eventually of the 156 reliable marker SNPs, which can induce non-synonymous-, frameshift-, nonsense-, and no-start mutations in amino acid sequences in proteins, 139 genes were chosen for further analysis. Of these, 14 randomly chosen SNPs were examined for SNP verification by PCR and Sanger sequencing to detect SNP positions in 20 BL and 70 SL chickens. The results of the analysis of the 14 SNPs clearly showed differential frequencies of nucleotide bases in the SNP positions between BL and SL chickens. Bioinformatic analysis showed that the 156 most reliable marker SNPs included genes involved in dermatological diseases/conditions such as ADAMTS13, ASPM, ATP6V0A2, BRCA2, COL12A1, GRM5, LRP2, OBSCN, PLAU, RNF168, STAB2, and XIRP1. Intermolecular gene network analysis revealed that candidate genes identified in SLV play a role in networks centered on protein kinases (MAPK, ERK1/2, PKC, PRKDC), phosphatase (PPP1CA), ubiquitinylation (UBC) and amyloid production (APP). Conclusions Various potential genetic markers showing amino acid changes and potential roles in vitiligo development were identified in the SLV chicken through genome resequencing. The genetic markers and bioinformatic interpretations of amino acid mutations found in SLV chickens may provide insight into the genetic component responsible for the onset and the progression of autoimmune vitiligo and serve as valuable markers to develop diagnostic tools to detect vitiligo susceptibility.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700