Polynomial chaos expansion for global sensitivity analysis applied to a model of radionuclide migration in a randomly heterogeneous aquifer
详细信息    查看全文
  • 作者:Valentina Ciriello (1)
    Vittorio Di Federico (1)
    Monica Riva (2)
    Francesco Cadini (3)
    Jacopo De Sanctis (3)
    Enrico Zio (3) (4)
    Alberto Guadagnini (2)
  • 关键词:Performance assessment ; Radionuclide migration ; Heterogeneous aquifers ; Global sensitivity analysis ; Sobol indices ; Polynomial chaos expansion
  • 刊名:Stochastic Environmental Research and Risk Assessment (SERRA)
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:27
  • 期:4
  • 页码:945-954
  • 全文大小:506 KB
  • 参考文献:1. Abramowitz M, Stegun IA (1970) Handbook of mathematical functions. Dover Publications, New York
    2. Archer GEB, Saltelli A, Sobol IM (1997) Sensitivity measures, ANOVA like techniques and the use of bootstrap. J Stat Comput Simulation 58:99鈥?20 CrossRef
    3. Ballio F, Guadagnini A (2004) Convergence assessment of numerical Monte Carlo simulations in groundwater hydrology. Water Resour Res 40:W04603 CrossRef
    4. Berkowitz B, Cortis A, Dentz M, Scher H (2006) Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev of Geophys 44:RG2003 CrossRef
    5. Cadini F, De Sanctis J, Cherubini A, Zio E, Riva M, Guadagnini A (2012) An integrated simulation framework for the performance assessment of radioactive waste repositories. Ann Nucl Energy 39:1鈥? CrossRef
    6. ENEA (1997) Internal report. Chapman, NA
    7. ENEA (2000) Inventario nazionale dei rifiuti radioattivi鈥攖ask force per il sito nazionale di deposito dei materiali radioattivi, ENEA (National agency for new technologies, Energy and sustainable economic development), 3rd edn (in Italian)
    8. Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, Berlin CrossRef
    9. G贸mez-Hern谩ndez JJ, Journel AG (1993) Joint sequential simulation of multi-gaussian field. In: Soares A (ed). Geostatitics Troia鈥?2, 1:85鈥?4
    10. Guadagnini A, Neuman SP (2001) Recursive conditional moment equations for advective transport in randomly heterogeneous velocity fields. Transport Porous Med 42:37鈥?7 CrossRef
    11. Huang S, Sankaran M, Ramesh R (2007) Collocation-based stochastic finite element analysis for random field problems. Probab Eng Mech 22:194鈥?05 CrossRef
    12. Marseguerra M, Zio E (2001) Genetic algorithms for estimating effective parameters in a lumped reactor model for reactivity predictions. Nucl Sci Eng 139:96鈥?04
    13. Marseguerra M, Patelli E, Zio E (2001a) Groundwater contaminant transport in presence of colloids I. A stochastic nonlinear model and parameter identification. Ann Nucl Energy 28:777鈥?03 CrossRef
    14. Marseguerra M, Patelli E, Zio E (2001b) Groundwater contaminant transport in presence of colloids II. Sensitivity and uncertainty analysis on literature case studies. Ann Nucl Energy 28:1799鈥?807 CrossRef
    15. Marseguerra M, Zio E, Patelli E, Giacobbo F, Ventura G, Mingrone G (2003) Monte Carlo simulation of contaminant release from a radioactive waste deposit. Math Comput Simul 62:421鈥?30 CrossRef
    16. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference groundwater flow model. Man. 83鈥?75, US Geol Surv Reston, VA
    17. Morales-Casique E, Neuman SP, Guadagnini A (2006a) Nonlocal and localized analyses of nonreactive solute transport in bounded randomly heterogeneous porous media: computational analysis. Adv Water Resour 29:1399鈥?418 CrossRef
    18. Morales-Casique E, Neuman SP, Guadagnini A (2006b) Nonlocal and localized analyses of nonreactive solute transport in bounded randomly heterogeneous porous media: theoretical framework. Adv Water Resour 29:1238鈥?255 CrossRef
    19. Nair RN, Krishnamoorthy TM (1999) Probabilistic safety assessment model for near surface radioactive waste disposal facilities. Environ Model Soft 14:447鈥?60 CrossRef
    20. Nataf A (1962) D茅termination des distributions dont les marges sont donn茅es. C R Acad Sci 225:42鈥?3
    21. Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26(8):1749鈥?758 CrossRef
    22. Neuman SP, Di Federico V (2003) Multifaceted nature of hydrogeologic scaling and its interpretation. Rev Geophys 41(3):1014. doi:10.1029/2003RG000130 CrossRef
    23. Neuman SP, Blattstein A, Riva M, Tartakovsky DM, Guadagnini A, Ptak T (2007) Type curve interpretation of late-time pumping test data in randomly heterogeneous aquifers. Water Resour Res 43:W10421. doi:10.1029/2007WR005871 CrossRef
    24. Porta G, Riva M, Guadagnini A (2012) Upscaling solute transport in porous media in the presence of an irreversible bimolecular reaction. Adv Water Resour 35:151鈥?62. doi:10.1016/j.advwatres.2011.09.004 CrossRef
    25. Rubin Y (2003) Applied stochastic hydrogeology. Oxford University Press, New York
    26. Rubin Y, Sun A, Maxwell R, Bellin A (1999) The concept of block-effective macrodispersivity and a unified approach for grid-scale- and plume-scale-dependent transport. J Fluid Mech 395:161鈥?80 CrossRef
    27. Saltelli A, Chan K, Scott EM (2000) Sensitivity analysis. Wiley, New York
    28. Sobol IM (1993) Sensitivity estimates for nonlinear mathematical models. Math Modeling Comput 1:407鈥?14
    29. Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simulation 55:271鈥?80 CrossRef
    30. Soize C, Ghanem R (2004) Physical systems with random uncertainties: chaos representations with arbitrary probability measures. J Sci Comput 26(2):395鈥?10
    31. Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Safety 93:964鈥?79 CrossRef
    32. Tartakovsky DM (2007) Probabilistic risk analysis in subsurface hydrology. Geophys Res Lett 34:L05404. doi:10.1029/2007GL029245 CrossRef
    33. Volkova E, Iooss B, Van Dorpe F (2008) Global sensitivity analysis for a numerical model of radionuclide migration from the RRC 鈥淜urchatov Institute鈥?radwaste disposal site. Stoch Environ Res Risk Assess 22:17鈥?1 CrossRef
    34. Wiener N (1938) The homogeneous chaos. Am J Math 60:897鈥?36 CrossRef
    35. Xiu D, Karniadakis GE (2002) The Wiener鈥揂skey polynomial chaos for stochastic differential equations. J Sci Comput 24(2):619鈥?44
    36. Zhang D (2002) Stochastic methods for flow in porous media: copying with uncertainties. Academic Press, San Diego
    37. Zhang D, Shi L, Chang H, Yang J (2010) A comparative study of numerical approaches to risk assessment of contaminant transport. Stoch Environ Res Risk Assess 24:971鈥?84 CrossRef
    38. Zuloaga P (2006) New developments in LLW management in Spain. TopSeal2006 Transactions, European Nuclear Society (ENS). http://www.euronuclear.org/events/topseal/transactions.htm
  • 作者单位:Valentina Ciriello (1)
    Vittorio Di Federico (1)
    Monica Riva (2)
    Francesco Cadini (3)
    Jacopo De Sanctis (3)
    Enrico Zio (3) (4)
    Alberto Guadagnini (2)

    1. Dipartimento di Ingegneria Civile, Ambientale e dei Materiali, Universit脿 di Bologna, Bologna, Italy
    2. Dipartimento di Ingegneria Idraulica, Ambientale, Infrastrutture Viarie, Rilevamento, Politecnico di Milano, Milan, Italy
    3. Dipartimento di Energia, Politecnico di Milano, Milan, Italy
    4. Chair on Systems Science and the Energetic Challenge, European Foundation for New Energy鈥撁塴ectricit茅 de France, Ecole Centrale Paris and Supelec, Paris, France
  • ISSN:1436-3259
文摘
We perform global sensitivity analysis (GSA) through polynomial chaos expansion (PCE) on a contaminant transport model for the assessment of radionuclide concentration at a given control location in a heterogeneous aquifer, following a release from a near surface repository of radioactive waste. The aquifer hydraulic conductivity is modeled as a stationary stochastic process in space. We examine the uncertainty in the first two (ensemble) moments of the peak concentration, as a consequence of incomplete knowledge of (a) the parameters characterizing the variogram of hydraulic conductivity, (b) the partition coefficient associated with the migrating radionuclide, and (c) dispersivity parameters at the scale of interest. These quantities are treated as random variables and a variance-based GSA is performed in a numerical Monte Carlo framework. This entails solving groundwater flow and transport processes within an ensemble of hydraulic conductivity realizations generated upon sampling the space of the considered random variables. The Sobol indices are adopted as sensitivity measures to provide an estimate of the role of uncertain parameters on the (ensemble) target moments. Calculation of the indices is performed by employing PCE as a surrogate model of the migration process to reduce the computational burden. We show that the proposed methodology (a) allows identifying the influence of uncertain parameters on key statistical moments of the peak concentration (b) enables extending the number of Monte Carlo iterations to attain convergence of the (ensemble) target moments, and (c) leads to considerable saving of computational time while keeping acceptable accuracy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700