Aqueous mercury adsorption in a fixed bed column of thiol functionalized mesoporous silica
详细信息    查看全文
  • 作者:Jesús M. Arsuaga (1)
    José Aguado (2)
    Amaya Arencibia (1)
    María S. López-Gutiérrez (2)
  • 关键词:Aqueous mercury adsorption ; Heavy metal removal ; Propylthiol functionalized materials ; Fixed bed adsorption ; Mesostructured materials
  • 刊名:Adsorption
  • 出版年:2014
  • 出版时间:February 2014
  • 年:2014
  • 卷:20
  • 期:2-3
  • 页码:311-319
  • 全文大小:443 KB
  • 参考文献:1. AENOR: Calidad del agua. Determinación del mercurio por espectrometría de fluorescencia atómica. UNE-EN-13506 (2002)
    2. Aguado, J., Arsuaga, J.M., Arencibia, A.: Adsorption of aqueous mercury (II) on propylthiolfunctionalized mesoporous silica obtained by cocondensation. Ind. Eng. Chem. Res. 44, 3665-671 (2005) CrossRef
    3. Aguado, J., Arsuaga, J.M., Arencibia, A.: Influence of synthesis conditions on mercury adsorption capacity of propylthiol functionalized SBA-15 obtained by co-condensation. Microporous Mesoporous Mater. 109, 513-24 (2008) micromeso.2007.05.061" target="_blank" title="It opens in new window">CrossRef
    4. Arencibia, A., Aguado, J., Arsuaga, J.M.: Regeneration of thiol-functionalized mesostructured silica adsorbents of mercury. Appl. Surf. Sci. 256, 5453-457 (2010) CrossRef
    5. Antochshuk, V., Olkhovyk, M., Jaroniec, I., Park, S.M., Ryoo, R.: Benzoylthiourea-modified mesoporous silica for mercury(II) removal. Lagmuir 19(7), 3031-034 (2003) CrossRef
    6. Bohart, G.S., Adams, E.Q.: Some aspects of the behavior of charcoal with respect to chlorine. J. Am. Chem. Soc. 42, 523-44 (1920) CrossRef
    7. Borba, C.S., Da Silva, E.A., Fagundes-Klen, M.R., Kroumov, A.D., Guirardello, R.: Prediction of the copper (II) ions dynamic removal from a medium by using mathematical models with analytical solution. J. Hazard. Mater. 152, 366-72 (2008) mat.2007.07.005" target="_blank" title="It opens in new window">CrossRef
    8. Bruzzoniti, M.C., Prelle, A., Sarzanini, C., Onida, B., Fiorilli, S., Garrone, E.: Retention of heavy metal ions on SBA-15 mesoporous silica functionalised with carboxylic groups. J. Sep. Sci. 30, 2414-420 (2007) CrossRef
    9. Chu, K.H.: Fixed bed sorption: setting the record straight on the Bohart–Adams and Thomas models. J. Hazard. Mater. 177, 1006-012 (2010) mat.2010.01.019" target="_blank" title="It opens in new window">CrossRef
    10. Cooney, D.O.: Adsorption Design for Wastewater Treatment. Lewis Publishers, Boca Raton (1999)
    11. Da’na, E., Sayari, A.: Adsorption of copper on amine-functionalized SBA-15: predicting breakthrough curves. Environ. Eng. 139(1), 95-03 (2013) CrossRef
    12. Environment, Community and Local Government: European Communities (Drinking Water) Regulations. Statutory Instruments. S.I. No. 106 (2007)
    13. EPA: Method 200.7. Trace Elements in Water, Solids and Biosolids by Inductively Coupled Plasma-Atomic Emission Spectroscopy. EPA-821-R-021-01-010 (2001)
    14. EPA: List of Contaminants and their MCLs. EPA 816-F-09-0004 (2009)
    15. Feng, X., Fryxell, G.E., Wang, Q., Kim, A.Y., Kemmer, K.M.: Functionalized monolayers on ordered mesoporous supports. Science 233, 923-26 (1997) CrossRef
    16. Giles, C.H., D′Silva, A.P., Easton, I.A.: A general treatment and classification of the solute adsorption isotherm II. Experimental interpretation. J. Colloid Interface Sci. 47(3), 66-77 (1974)
    17. Hashim, M.A., Chu, K.H.: Prediction of protein breakthrough behavior using simplified analytical solutions. Sep. Purif. Technol. 53, 189-97 (2007) CrossRef
    18. Mercier, L., Pinnavaia, T.J.: Accces in mesoporous materials: advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation. Adv. Mater. 9, 500-03 (1997) ma.19970090611" target="_blank" title="It opens in new window">CrossRef
    19. Shahbazi, A., Younesia, H., Badiei, A.: Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chem. Eng. J. 168, 505-18 (2011) CrossRef
    20. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscon, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57(4), 603-19 (1985) CrossRef
    21. Thomas, H.C.: Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 66, 1664-666 (1944) CrossRef
    22. UNEP: Global Mercury Assessment 2013, Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva (2013)
    23. Walcarius, A., Mercier, L.: Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants. J. Mater. Chem. 20, 4478-511 (2010) CrossRef
    24. Wolborska, A.: Adsorption on activated carbon of p-nitrophenol from aqueous solution. Wat. Res. 23(1), 85-1 (1989) CrossRef
  • 作者单位:Jesús M. Arsuaga (1)
    José Aguado (2)
    Amaya Arencibia (1)
    María S. López-Gutiérrez (2)

    1. Department of Chemical and Energy Technology, ESCET, Rey Juan Carlos University, C/Tulipán, s/n, 28933, Móstoles, Madrid, Spain
    2. Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán, s/n, 28933, Móstoles, Madrid, Spain
  • ISSN:1572-8757
文摘
The aim of this work was to investigate the aqueous mercury adsorption in a fixed bed of mesostructured silica SBA-15 functionalized with propylthiol by co-condensation (SBA-15-SH). Powdered synthesized adsorbents were used to prepare pellets with sizes ranging from 0.5 to 1?mm. The physicochemical properties determined from N2 adsorption and chemical analysis were compared for powder and pellets. Batch static experiments were carried out to obtain the equilibrium mercury adsorption isotherms, resulting that although the maximum adsorption capacity was reduced from powder to pellets, the materials maintained high efficiency for mercury removal even at very low aqueous metal concentration. Dynamic experiments were carried out in a fixed bed column by modifying the volumetric flow rate, bed length, inlet concentration, and amount of propylthiol groups incorporated to the adsorbent, and analyzing the temporal scale and the mercury adsorption capacities. The elution of the fixed bed was carried out chemically by circulating an aqueous 2?M hydrobromic acid stream for 2?h so achieving a complete recovery of the mercury previously adsorbed. Simplified dynamic equations of Bohart–Adams and Wolborska were used for modeling the breakthrough curves.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700