Optimization of Anaerobic Co-digestion of Strawberry and Fish Waste
详细信息    查看全文
  • 作者:Antonio Serrano (1)
    José A. Siles (1)
    M. Carmen Gutiérrez (1)
    M. ángeles Martín (1)
  • 关键词:Strawberry extrudate ; Fish waste ; Anaerobic co ; digestion ; Optimization ; Chloride ; Free ammonia
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:173
  • 期:6
  • 页码:1391-1404
  • 全文大小:365 KB
  • 参考文献:1. FAOSTAT http://faostat.fao.org/site/567/default.aspx#ancor (accessed 3.14.2013).
    2. Ayalon, O., Avnimelech, Y., & Shechter, M. (2001). / Environmental Management, 27, 697-04. CrossRef
    3. R?dsrud, G., Lersch, M., & Sj?de, A. (2012). / Biomass Bioenergy, 46, 46-9. mbioe.2012.03.028" target="_blank" title="It opens in new window">CrossRef
    4. Verstraete, W. (2010). / Special Abstracts/Journal of Biotechnology, 150S, S1–S576.
    5. Ahn, H. K., Smith, M. C., Kondrad, S. L., & White, J. W. (2010). / Applied Biochemistry and Biotechnology, 160, 965-75. CrossRef
    6. Forgács, G., Lundin, M., Taherzadeh, M. J., & Sárvári Horváth, I. (2013). / Applied Biochemistry and Biotechnology, 169, 2016-028. CrossRef
    7. Gavala, H. N., Yenal, U., Skiadas, I. V., Westermann, P., & Ahring, B. K. (2003). / Water Research, 37, 4561-572. CrossRef
    8. Wheatley, A. (1990). / Anaerobic digestion: a waste treatment technology, ed. London: Elsevier.
    9. Fountoulakis, M. S., Petousi, I., & Manios, T. (2010). / Waste Management, 30, 1849-853. man.2010.04.011" target="_blank" title="It opens in new window">CrossRef
    10. Siles, J. A., Serrano, A., Martín, A., & Martín, M. A. (2013). / Journal of Cleaner Production, 42, 190-97. CrossRef
    11. Chen, Y., Chen, J. J., & Creamer, K. S. (2008). / Bioresource Technology, 99, 4044-064. CrossRef
    12. Nges, I. A., Mbatia, B., & Bj?rnsson, L. (2012). / Journal of Environmental Management, 110, 159-65. man.2012.06.011" target="_blank" title="It opens in new window">CrossRef
    13. Mshandete, A., Kivaisi, A., Rubindamayugi, M., & Mattiasson, B. (2004). / Bioresource Technology, 95, 19-4. CrossRef
    14. Serrano, A., Siles, J. A., Chica, A. F., & Martín, M. A. (2013). / Journal of Cleaner Production, 54, 125-32. CrossRef
    15. APHA (1989) “Standard methods for the examination of water and wastewater- APHA, AWWA & WPCF.
    16. US Composting Council (2001) Test methods for the examination of composting and compost.
    17. álvarez, J. A., Otero, L., & Lema, J. M. (2010). / Bioresource Technology, 101, 1153-158. CrossRef
    18. Hills, D. J. (1979). / Agricultural Wastes, 1, 267-78. CrossRef
    19. Cheng, F., Boe, K., & Angelidaki, I. (2011). / Water Research, 45, 3473-480. CrossRef
    20. Ortega, L., Husser, C., Barrington, S., & Guiot, S. R. (2008). / Water Science and Technology, 57, 419-22. CrossRef
    21. Aiyuk, S., Forrez, I., Lieven, D. K., van Haandel, A., & Verstraete, W. (2006). / Bioresource Technology, 97, 2225-241. CrossRef
    22. Field, J., Sierra-Alvarez, R., Lettinga, G. (1988). Ensayos anaerobios (Anaerobic assays). 4° Seminario de Depuración Anaerobia de Aguas Residuales. Universidad de Valladolid, Spain.
    23. Emerson, K., Russo, R. C., Lund, R. E., & Thurston, R. V. (1978). / Journal of the Fisheries Research Board of Canada, 32, 2379-383. CrossRef
    24. ?stergaard, N. (1985). Biogasproduktion i det thermofile temperaturinterval. STUB rapport nr. 21. Kemiteknik Dansk Teknologisk Institut, Taastrup, Denmark.
    25. Fannin, K.F. (1987). in Anaerobic digestion of biomass: start-up, operation, stability and control (Chynoweth, D.P., Isaacson, R., ed.), Elsevier, London, UK, p. 171-196.
    26. Balaguer, M. D., Vicent, M. T., & Paris, J. M. (1992). / Biotechnology Letters, 14, 433-38. CrossRef
    27. Fernández, R. (2001). / Diploma de Estudios Avanzados. Córdoba: Universidad de Córdoba.
    28. Eiroa, M., Costa, J. C., Alves, M. M., Kennes, C., & Veiga, M. C. (2012). / Waste Management, 32, 1347-352. man.2012.03.020" target="_blank" title="It opens in new window">CrossRef
    29. Dai, X., Duan, N., Dong, B., & Dai, L. (2013). / Waste Management, 33, 308-16. man.2012.10.018" target="_blank" title="It opens in new window">CrossRef
    30. Gebauer, R. (2004). / Bioresource Technology, 93, 155-67. CrossRef
    31. Carlsson, M., Lagerkvist, A., & Morgan-Sagastume, F. (2012). / Waste Management, 32, 1634-650. man.2012.04.016" target="_blank" title="It opens in new window">CrossRef
    32. Macauley, J., Qiang, Z., Adams, C., Surampalli, R., & Mormile, M. (2006). / Water Research, 40, 2017-026. CrossRef
    33. Nallathambi, V. (1998). / Biomass Bioenergy, 14, 179-84. CrossRef
    34. Britz, T. J., Noeth, C., & Lategan, P. M. (1988). / Water Research, 22, 163-69. CrossRef
    35. Alphenaar, P. A., Sleyster, R., Reuver, P., Ligthart, G. J., & Lettinga, G. (1993). / Water Research, 27, 749-56. CrossRef
    36. Lin, C. Y., & Lay, C. H. (2004). / International Journal of Hydrogen Energy, 29, 275-81. CrossRef
  • 作者单位:Antonio Serrano (1)
    José A. Siles (1)
    M. Carmen Gutiérrez (1)
    M. ángeles Martín (1)

    1. Department of Chemical Engineering, University of Cordoba (Spain), Campus Universitario de Rabanales, Edificio Marie Curie (C-3). Ctra. N IV, km 396, 14071, Cordoba, Spain
  • ISSN:1559-0291
文摘
Anaerobic co-digestion of agri-food waste is a promising management alternative. Its implementation, however, requires evaluating the proportion in which waste should be mixed to optimize their centralized treatment. The combined treatment of strawberry extrudate and fish waste, which are widely generated in Mediterranean areas, was optimized. Strawberry extrudate and fish waste were mixed and treated at different proportions (88:12, 94:6, and 97:3, respectively; wet basis). The proportions selected for the mixture allow the different flows to be absorbed simultaneously. The highest methane production was observed for the ratio 94:6 (0.205?m3 STP CH4/kg volatile solid) (VS) (STP; 0?°C, 1?atm), with a methane production rate in the range of 5?·-0?-?·-0??m3 STP/kg VS?·?d, while the highest organic loading rate was observed for the mixture at a proportion 88:12 (1.9?±-.1?kg VS/m3?·?d). Biodegradability was found to be similar for the 88:12 and 94:6 proportions, with values around 90?% in VS. Nevertheless, the 97:3 ratio was not viable due to a low methane production. An inhibition phenomenon occurred at increasing loads due to the effect of some compounds contained in the fish waste such as chloride or nitrogen.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700