Evaluation of Candidate Reference Genes for Normalization of Quantitative RT-PCR in Switchgrass Under Various Abiotic Stress Conditions
详细信息    查看全文
  • 作者:Linkai Huang (1)
    Haidong Yan (1)
    Xiaomei Jiang (1)
    Xinquan Zhang (1)
    Yunwei Zhang (3)
    Xiu Huang (1)
    Yu Zhang (1)
    Jiamin Miao (1)
    Bin Xu (2)
    Taylor Frazier (4)
    Bingyu Zhao (4)
  • 关键词:Abiotic stress ; qRT ; PCR ; Reference genes ; Panicum virgatum L
  • 刊名:BioEnergy Research
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:4
  • 页码:1201-1211
  • 全文大小:2,694 KB
  • 参考文献:1. Bouton JH (2007) Molecular breeding of switchgrass for use as a biofuel crop. Curr Opin Genet Dev 17(6):553鈥?58 CrossRef
    2. Sanderson MA, Reed RL, McLaughlin SB, Wullschleger SD, Conger BV, Parrish DJ, Wolf DD, Taliaferro C, Hopkins AA, Ocumpaugh WR (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56(1):83鈥?3 CrossRef
    3. Lemus R, Parrish DJ, Wolf DD (2009) Nutrient uptake by 鈥楢lamo鈥?switchgrass used as an energy crop. Bioenergy Res 2(1鈥?):37鈥?0 CrossRef
    4. Vadas PA, Barnett KH, Undersander DJ (2008) Economics and energy of ethanol production from alfalfa, corn, and switchgrass in the Upper Midwest, USA. Bioenergy Res 1(1):44鈥?5 CrossRef
    5. Lemus R, Parrish DJ, Abaye O (2008) Nitrogen-use dynamics in switchgrass grown for biomass. Bioenergy Res 1(2):153鈥?62 CrossRef
    6. Wolf DD, Fiske DA (1996) Planting and managing switchgrass for forage, wildlife and conservation. Virginia Polytechnic Institute and State University
    7. Lassner M, Bedbrook J (2001) Directed molecular evolution in plant improvement. Curr Opin Plant Biol 4(2):152鈥?56 CrossRef
    8. Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47(7):570鈥?77 CrossRef
    9. Barney JN, Mann JJ, Kyser GB, Blumwald E, Van Deynze A, DiTomaso JM (2009) Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci 177(6):724鈥?32 CrossRef
    10. Burner DM, Tew TL, Harvey JJ, Belesky DP (2009) Dry matter partitioning and quality of / Miscanthus, / Panicum, and / Saccharum genotypes in Arkansas, USA. Biomass Bioenergy 33(4):610鈥?19 CrossRef
    11. Queir贸s F, Rodrigues JA, Almeida JM, Almeida DPF, Fidalgo F (2011) Differential responses of the antioxidant defence system and ultrastructure in a salt-adapted potato cell line. Plant Physiol Biochem 49(12):1410鈥?419 CrossRef
    12. Pons R, Cornejo MJ, Sanz A (2011) Differential salinity-induced variations in the activity of H+-pumps and Na+/H+ antiporters that are involved in cytoplasm ion homeostasis as a function of genotype and tolerance level in rice cell lines. Plant Physiol Biochem 49(12):1399鈥?409 CrossRef
    13. Kim S, Rayburn AL, Voigt T, Parrish A, Lee DK (2012) Salinity effects on germination and plant growth of prairie cordgrass and switchgrass. Bioenergy Res 5(1):225鈥?35 CrossRef
    14. Li YF, Wang YX, Tang YH, Kakani VG, Mahalingam R (2013) Transcriptome analysis of heat stress response in switchgrass ( / Panicum virgatum L.). BMC plant Biol 13(1):153 CrossRef
    15. Sun GL, Stewart CN Jr, Xiao P, Zhang BH (2012) MicroRNA expression analysis in the cellulosic biofuel crop switchgrass ( / Panicum virgatum) under abiotic stress. PLoS One 7(3):e32017 CrossRef
    16. Jia XY, Wang WX, Ren LG, Chen QJ, Mendu V, Willcut B, Dinkins R, Tang XQ, Tang GL (2009) Differential and dynamic regulation of miR398 in response to ABA and salt stress in / Populus tremula and / Arabidopsis thaliana. Plant Mol Biol 71(1鈥?):51鈥?9 CrossRef
    17. Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in / Arabidopsis. Planta 229(4):1009鈥?014 CrossRef
    18. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in / Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell Online 18(8):2051鈥?065 CrossRef
    19. Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The / BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in / Arabidopsis. Plant Cell Online 15(11):2551鈥?565 CrossRef
    20. Kizis D, Lumbreras V, Pag猫s M (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett 498(2):187鈥?89 CrossRef
    21. Fujii H, Verslues PE, Zhu JK (2011) / Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci 108(4):1717鈥?722 CrossRef
    22. Duroux L, Welinder KG (2003) The peroxidase gene family in plants: a phylogenetic overview. J Mol Evol 57(4):397鈥?07 CrossRef
    23. Le DT, Aldrich DL, Valliyodan B, Watanabe Y, Van Ha C, Nishiyama R, Guttikonda SK, Quach TN, Gutierrez-Gonzalez JJ, Tran L-SP (2012) Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions. PLoS One 7(9):e46487 CrossRef
    24. Gachon C, Mingam A, Charrier B (2004) Real-time PCR: what relevance to plant studies? J Exp Bot 55(402):1445鈥?454 CrossRef
    25. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1(3):1559鈥?582 CrossRef
    26. Hu RB, Fan CM, Li HY, Zhang QZ, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10(1):93 CrossRef
    27. Sun M, Wang YS, Yang DQ, Wei CL, Gao LP, Xia T, Shan Y, Luo Y (2010) Reference genes for real-time fluorescence quantitative PCR in / Camellia sinensis. Chin Bull Bot 45(5):579鈥?87
    28. Phillips MA, D鈥橝uria JC, Luck K, Gershenzon J (2009) Evaluation of candidate reference genes for real-time quantitative PCR of plant samples using purified cDNA as template. Plant Mol Biol Rep 27(3):407鈥?16 CrossRef
    29. Marum L, Miguel A, Ricardo CP, Miguel C (2012) Reference gene selection for quantitative real-time PCR normalization in / Quercus suber. PLoS One 7(4):e35113 CrossRef
    30. Luo C, He XH, Chen H, Ou SJ, Gao MP (2010) Analysis of diversity and relationships among mango cultivars using Start Codon Targeted (SCoT) markers. Biochem Syst Ecol 38(6):1176鈥?184 CrossRef
    31. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Expe Botany 56(421):2907鈥?914 CrossRef
    32. Han XJ, Lu MZ, Chen YC, Zhan ZY, Cui QQ, Wang YD (2012) Selection of reliable reference genes for gene expression studies using real-time PCR in tung tree during seed development. PLoS One 7(8):e43084 CrossRef
    33. Zhang YQ, Chen DL, Smith MA, Zhang BH, Pan XP (2012) Selection of reliable reference genes in / Caenorhabditis elegans for analysis of nanotoxicity. PLoS One 7(3):e31849 CrossRef
    34. L酶vdal T, Lillo C (2009) Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem 387(2):238鈥?42 CrossRef
    35. Migocka M, Papierniak A (2011) Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Mol Breed 28(3):343鈥?57 CrossRef
    36. Gu CS, Chen SM, Liu ZL, Shan H, Luo HL, Guan ZY, Chen FD (2011) Reference gene selection for quantitative real-time PCR in chrysanthemum subjected to biotic and abiotic stress. Mol Biotechnol 49(2):192鈥?97 CrossRef
    37. Zhu XY, Li XP, Chen WX, Chen JY, Lu WJ, Chen L, Fu DW (2012) Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS One 7(8):e44405 CrossRef
    38. Gimeno J, Eattock N, Van Deynze A, Blumwald E (2014) Selection and validation of reference genes for gene expression analysis in switchgrass ( / Panicum virgatum) using quantitative real-time RT-PCR. PLoS One 9(3):e91474 CrossRef
    39. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7(1):33 CrossRef
    40. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034
    41. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper鈥揈xcel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509鈥?15 CrossRef
    42. Andersen CL, Jensen JL, 脴rntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245鈥?250 CrossRef
    43. Radoni膰 A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313(4):856鈥?62 CrossRef
    44. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287鈥?91 CrossRef
    45. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell Online 18(5):1292鈥?309 CrossRef
    46. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in / Arabidopsis. Plant Cell Online 10(8):1391鈥?406 CrossRef
    47. Banda M, Bommineni A, Thomas RA, Luckinbill LS, Tucker JD (2008) Evaluation and validation of housekeeping genes in response to ionizing radiation and chemical exposure for normalizing RNA expression in real-time PCR. Mutat Res 649(1):126鈥?34 CrossRef
    48. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in / Arabidopsis. Plant Physiol 139(1):5鈥?7 CrossRef
    49. Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M (2000) Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics 2(3):143鈥?47
    50. Iskandar HM, Simpson RS, Casu RE, Bonnett GD, Maclean DJ, Manners JM (2004) Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep 22(4):325鈥?37 CrossRef
    51. Bogdanovi膰 MD, Dragi膰evi膰 MB, Tani膰 NT, Todorovi膰 SI, Mi拧i膰 DM, 沤ivkovi膰 ST, Tissier A, Simonovi膰 AD (2013) Reverse transcription of 18S rRNA with poly (dT) 18 and other homopolymers. Plant Mol Biol Rep 31(1):55鈥?3 CrossRef
    52. P茅rez S, Royo L, Astudillo A, Escudero D, 脕lvarez F, Rodr铆guez A, G贸mez E, Otero J (2007) Identifying the most suitable endogenous control for determining gene expression in hearts from organ donors. BMC Mol Biol 8(1):114 CrossRef
    53. An YQ, McDowell JM, Huang S, McKinney EC, Chambliss S, Meagher RB (1996) Strong, constitutive expression of the / Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10(1):107鈥?21 CrossRef
    54. Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK (2004) Real鈥恡ime RT鈥怭CR profiling of over 1400 / Arabidopsis transcription factors: unprecedented sensitivity reveals novel root鈥?and shoot鈥恠pecific genes. Plant J 38(2):366鈥?79 CrossRef
    55. Tong ZG, Gao ZH, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10(1):71 CrossRef
    56. Zhong HY, Chen JW, Li CQ, Chen L, Wu JY, Chen JY, Lu WJ, Li JG (2011) Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Rep 30(4):641鈥?53 CrossRef
    57. Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6(1):27 CrossRef
    58. Jian B, Liu B, Bi YR, Hou WS, Wu CX, Han TF (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9(1):59 CrossRef
    59. Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco ( / Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283(3):233鈥?41 CrossRef
    60. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345(2):646鈥?51 CrossRef
    61. Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29(2):332鈥?37
    62. Gutierrez L, Mauriat M, Gu茅nin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription鈥恜olymerase chain reaction (RT鈥怭CR) analysis in plants. Plant Biotechnol J 6(6):609鈥?18 CrossRef
    63. Exp贸sito-Rodr铆guez M, Borges AA, Borges-P茅rez A, P茅rez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8(1):131 CrossRef
    64. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112鈥?19
  • 作者单位:Linkai Huang (1)
    Haidong Yan (1)
    Xiaomei Jiang (1)
    Xinquan Zhang (1)
    Yunwei Zhang (3)
    Xiu Huang (1)
    Yu Zhang (1)
    Jiamin Miao (1)
    Bin Xu (2)
    Taylor Frazier (4)
    Bingyu Zhao (4)

    1. Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, 625014, Ya鈥檃n, Sichuan, China
    3. Grassland Institute, China Agricultural University, Beijing, China
    2. College of Grassland Science, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
    4. Department of Horticulture, Virginia Tech, Blacksburg, VA, 24060, USA
  • ISSN:1939-1242
文摘
Quantitative real-time reverse transcriptase PCR (qRT-PCR) is a sensitive and powerful technique for measuring differential gene expression; however, changes in gene expression induced by abiotic stresses are complex and multifaceted. Therefore, a set of stably expressed reference genes for data normalization is required. Switchgrass (Panicum virgatum L.) is a prime candidate crop for bioenergy production. The expression stability of reference genes in switchgrass, especially under different experimental conditions, is largely unknown. In order to identify the most suitable reference genes for abiotic stress studies in switchgrass, we evaluated 14 candidate genes for their expression stability under drought, high salinity, cold, heat, and waterlogging treatments using the Delta Ct, geNorm, BestKeeper, and NormFinder approaches. Validation of reference genes indicated that the best reference genes should be selected based on the stress treatment. Actin 2 (ACT2), carotenoid-binding protein 20 (CBP20), and Tubulin (TUB) were found to have the highest expression stability to study drought stress. 18S ribosomal RNA1 (18S rRNA1), ACT2, and TUB were the most stably expressed genes under salt stress. Ubiquitin-conjugating enzyme (UBC), TUB, and cyclophilin2 (CYP2) were the most suitable reference genes across cold treatments. Likewise, 18S rRNA1, UBC, and TUB were good reference genes for studying heat stress, while ACT2, 18S rRNA1, and ubiquitin3 (UBQ3) were the top three reference genes under waterlogging treatment. Considering that reference gene expression may vary across switchgrass tissues, ACT2 and 18S ribosomal RNA2 (18S rRNA2) were shown to be the most stably expressed genes in switchgrass leaves and roots, respectively. The highly ranked reference genes that were identified in this study were shown to be capable of detecting subtle differences in the expression rates of other genes. These differences may have been missed if a less suitable reference gene was used.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700